人妻无码一区二区三区AV_日韩人妻无码专区久久_欧美巨大xxxx做受高清_内射中出日韩无国产剧情_无码爽大片日本无码AAA特黄_在线播放免费人成毛片乱码_国产一区不卡第二页_国产一级特黄不卡在线
佳學基因遺傳病基因檢測機構排名,三甲醫(yī)院的選擇

基因檢測就找佳學基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學基因準確有效服務好! 靶向用藥怎么搞,佳學基因測基因,優(yōu)化療效 風險基因哪里測,佳學基因
當前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準嗎

(1) 環(huán)境壓力是如何降低精子質量和降低男性生育能力的;(2)哪些化學元素會導致男性生殖系統(tǒng)的氧化應激和免疫遺傳學改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機制的變化相關,作為男性生殖條件的病理生理障礙的標志;(4)免疫遺傳性疾病的環(huán)境應激因素如何伴隨男性不育和反應;環(huán)境和遺傳危險因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責任編輯:佳學基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學基因醫(yī)學技術(北京)有限公司,湖北佳學基因醫(yī)學檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設計制作 基因解碼基因檢測信息技術部

人妻无码一区二区三区AV_日韩人妻无码专区久久_欧美巨大xxxx做受高清_内射中出日韩无国产剧情_无码爽大片日本无码AAA特黄_在线播放免费人成毛片乱码_国产一区不卡第二页_国产一级特黄不卡在线 青青久久精品国产| 丁香婷婷综合精品六月初 | 精品久久综合1区2区3区| 艳欲精品一区二区三区| 99日本在线视频播放| 欧美日韩视频区一| 人人爽人人澡人人喊| 在线观看免费视频亚洲精品| av天堂亚洲国产aⅴ| 免费国产一级二级三级| 丰满人妻日韩一二三区不卡| 欧美系列精品亚洲v在线观看| 欧美亚洲精品国产1区2区| 国产成人精品国内自产拍视频| 国产精品19禁在线观看2021| 日韩欧美高清国产视频| 福利片网站视频在线观看| 国产男女爱视频在线观看| 日韩字幕第三页日韩字幕第三页| 一级黄片免费观看| 精品久久久久久久久久不卡| 亚洲 欧洲 自拍 美女| 国产亚洲综合欧美一区| 久久久精品国产sm一区二区| 国产精品视频网站二区| 国产XXX69麻豆国语对白 亚洲国产福利| 午夜久久黄色视频| 99re中文字幕亚洲| 欧美日韩美腿丝袜一区在线视频| 亚洲观看在线www| 91人妻人人爽人人澡精品| 久热视频精品在线| 一区二区三区不卡乱码| 最近中文免费一区二区三| 不卡中文字幕永久999| 亚洲欧美另类黄色小说| 国产精品国产三级国产一区| 日韩在线二区三区免费| 亚洲国产日韩欧美视频| 丁香五六婷婷久久| 亚洲区中文字幕在线| 久久久久综合精品福利| 国产中文字幕久操| 亚洲免费a级黄片视频| 亚洲天堂av另类在线播放| 日韩黄色大片网站网址| 国产精品久久免费一区dyd| 精品国自产拍在线观看| 亚洲激情视频在线观看不卡一二| 欧美极品少妇xxxx喷水| 中文字幕日韩一级| 精品国产乱码久久久久久公司 | 亚洲天堂一区在线观看网站| 欧美黄色国产精品| 日韩中文字幕在线观看的| 国产午夜福利在线观看免费视频 | 九九热视频在线观看一区| 欧美一级亚洲欧洲日本| 欧美国产一区二区视| 久久99九九视频一区二区| 91久久久久久人妻| 99热这里只有精品6在线观看| 人人做天天爱夜夜| 久久精品国产99久久99久久久| 国产精品网在线观看| 国产嫩草官方永久入口| 蜜臀午夜精品一区二区| 国产日韩欧美在线精品| 俺也色亚洲色图中文字幕| 欧美精品1区2区| 日本一区二区三区清视频| 伊人久久狠狠综合| 日韩aⅴ中文字幕在线播放| 欧美日韩国产精彩视频| 久久婷婷五月综合色精品首页 | 视频二区日韩人妻| 日本少妇吞精囗交| av天堂一区二区三区精品 | 少妇高潮喷水久久久免费| 国产一区二区免费午夜电影| 婷婷综合久久精品| 欧美中文字幕6666| 欧美黄色一区二区三区| 日本免费一区二区视频网站| 美女美腿丝袜日韩在线| 亚洲欧美另类黄色小说| 成人午夜淫片免费在线观看| 国产精品99久久久| 拍拍国产电影天堂| 一区二区九亚洲观看三区不卡女| 中文亚洲欧美日韩无线码| 国产精品99久久久| 欧美日韩成人三级| 精品欧美一区二区三区播放| 手机在线国产一区二区| 精品视频美女久久久中文字幕| 婷婷中文字幕综合在线视频| 中文字幕日韩观看| 国产自免费在线观看| 欧洲va亚洲va在线观看| 午夜福利精品影院| 欧美性猛片aaaaaaa做受| 制服丝袜 在线 亚洲| 国产成人8x人网站在线视频| 精品三级在线播放| 国产av巨作久久久久久久| 日韩丝袜中文字幕在线| 亚洲国产电影在线观看精品 | 亚洲中文字幕无码卡通动漫野外| 在线中文字幕日韩在线| 欧日韩视频777888| 2021最新国产精品网站| 亚洲一区二区电影在线| 欧美日韩精品一区二区三区视频播放 | 污亚洲一区网站在线观看| 99re免费热精品视频在线| 国产男女无套在线观看| 中文字幕精品日韩综合| 在线观看日韩高清不卡av一区| 国产精品视频三级| 成人黄色av大片在线| 一区二区久久久免费| 99精品中文字幕视频| 伊人久久狠狠综合| 国产精品久久久久久久成人午夜 | 四虎成人精品一区二区免费网站| 91精品国产全国免费观看| 亚洲精品国偷拍自产在线观看蜜臀| 在线免费日韩av| 激情丰满少妇嘿咻一区二区| av福利一区在线看| 在线观看高清视频一区二区三区| 日本超a级片一区二区| 久久这里只有精彩视频香蕉| 欧美黄色三级一区| 中文字幕对少妇高潮| 91麻豆精品91久久| 手机看片国产永久免费在线观看| 国产一区一一区不卡电影| 激情五月天丁香综合| 亚洲色图中文字幕激情| 女同一区二区在线观看| 亚洲a版天堂一区二区三区| 国产无遮无挡120秒| 国产在线观看高清不卡的av| 亚洲国产精品狗做人人爽| 欧美精品 在线观看| 日本中文字幕黄色影院| 午夜视频一区在线| 免费观看的黄色av| 国产一区二区三区四区五区密私| 少妇少妇久久久久久久久| 国产精品九九九九九| 国产精品极品一区二区免费视频| 日韩欧美视频在线观看网站| 精品一级一片国语内射视频播放| 欧美日韩中文字幕另类| 天天摸夜夜操免费视频| 亚洲一区免费视频| 国产av一区二区又粗又长又爽| 亚洲av秘精品一区二区三区| 美女色网站在线观看不卡av| 国产在线成人免费视频色婷婷| 69国产盗摄一区二区三区五区| 免费观看成年人黄片| 91精品视频免费在线观看| 亚洲韩国日本欧美综合| 久久精品国产护士电影九一| 中文字幕在线视频日韩精| 国产亚洲美女精品久久久久| 亚洲电影在线免费观看网站| www.99精品| 免费播放中文字幕| 最新中文字幕一区视频| 韩国三级国产精品一区| 亚洲一卡二卡在线免费观看| 2021最新国产精品网站| 欧洲视频在线观看| 国产av不卡久久久| 亚洲欧美亚洲在线| 精品久久久久久综合网| 亚洲精品大片www| 免费观看污视频网站| 久久五月精品综网中文字幕 | 精品久久久中文字幕二区| 制服丝袜av无码专区完整版| 亚洲av综合不卡一区| 欧美在线高清免费| 2022国产精品福利在线观看| 日韩成人av免费观看网站 | 日韩精品毛片人妻特黄| 国产高清黄色视频网站| 国产一区欧美亚洲第一页| 女人高潮内射99精品| 国产福利手机在线| 国产亚洲精品a在线观看| 国产MD视频一区二区三区| 亚洲永久免费中文字幕在线播放| 无码专区男人本色| 大伊香蕉精品视频在线天堂女| 人妻精品视频在线| 午夜免费高清网站| 国产精品一级片在线观看| 日韩欧美一区二区久久婷婷| 久热99这里只有精品视频| 91精品国自在自线免费观看| 国产91av视频在线观看| 精品一区二区在线观看网站| 四虎在线永久免费看精品| 国产一区波多野结衣| 欧美一区二区人视频| 成人亚洲a片v一区二区三区蜜臀| 99九九精品视频| 国产一区二区三区免费网站| 日韩精品最新久久久| 亚洲男人天堂一区| 亚洲精品一区在线观看视频| 国产丝袜91久久久久久久久| 日韩欧美一区二区三区四区在线| 猫咪在线观看视频最新地址| 亚洲中文字幕国产区| 中文字幕日韩综合久久| 精品少妇一区二区视频在线观看| 欧洲97色综合成人网| 人人色在线视频播放| 国产精品久久久久久久成人午夜| 免费人成视频在线观看网址| 两性视频久久香蕉| 日韩亚洲欧美亚洲天堂| 中国成人精品网站| 国产精品久久久久开码性色av| 久久久女人妻96一区精品香蕉| 欧美日韩免费成人在线| 亚洲av国产综合一区| 午夜内射一区二区三区| 亚洲欧美另类日韩国产古典精品| 青青一区二区三区91| 2021最新国产精品网站| 波多野结衣国产av| 久久蜜臀亚洲一区二区| 宅男66lu国产在线观看| 极品久久国产av 久久国产极品av| 欧美日韩在线视频免费完整| 日韩激情av在线播出| 国产日韩亚洲欧美| 亚洲欧洲精品不卡av | 免费网站一区二区三区| 久久久精品人妻一区二区三区蜜桃| 日本 亚洲 黄色 免费| 日本女黑人中文字幕永久在线| 天天去色综合久久婷婷| 亚洲成v人片一区二区| 弄得少妇高潮一区二区网站| 亚洲欧美亚洲在线| 最新亚洲中文av在线不卡| 手机在线精品视频| 国产中文精品色婷婷综| 最新午夜毛片视频| 亚洲另类自拍欧美| 久久精品免费福利视频| 国产精品无卡无在线播放| 国内精品久久久久影院优| 手机在线视频一区二区| 91久久香蕉国产线看观看软件| 欧美一级片欧美一区二区三区| 中文字幕在线播放第三页| 国产精品日本一区二区视频| 麻豆午夜激情视频| 国产精品无卡无在线播放| 九九热视频在线播放| 成人免费视频在线看| 亚洲一区二区三区 视频| 午夜久久一二三区| 国产精品久久久久久久模特人妻| 免费看毛片的网站在线不卡顿| 亚洲视频播放在线| 久久香蕉国产线看观看av| 欧美精视频一区二区三区| 国产精品极品一区二区免费视频| 2019午夜视频福利在线| 欧美日韩极品在线观看| 欧美亚洲日本国产综合网| 中文字幕高清在线播放第一页| av免费网站一区二区| 丰满人妻少妇一区二区三区蜜桃| 久久成人大片网站| 国产理伦片一区二区三区| 欧美日韩国产免费一区二区三区 | av网址大全在线观看中文字幕| 久久久久久91香蕉国产蜜臀| 久久久久久91香蕉国产蜜臀| 日韩人妻大片观看网址| 五月激情欧美综合网| 99热在线观看精品国产| 欧美乱强伦xxxxx高潮| 国产中文字幕乱码在线| 在线免费观看黄色网址| 欧洲三级久久久精品| 欧美日韩国产三级一区二区三区| 国产精品黄色av电影网| 人人做天天爱夜夜| 日韩av大全在线播放| 欧洲久久精品一区二区三区| 久久精品视频这里免费观看| 看亚洲成人a级片| 亚洲中文字幕视频电影播放| 国产又粗又黄又猛视频| 亚洲中文字幕一区四区| 青青久久精品国产| www.一区二区少妇| 国产中文字幕乱码在线| 欧美精品人在线观看| 丰满岳乱妇久久久| 50老熟妇女一区二区三区| 亚洲欧美中文日韩综合| 精品亚洲成人7777在线观看| 男人的天堂在线视频99999| 亚洲乱色国产精品| 亚洲欧美另类日韩国产古典精品| 美日韩在线调教变态av| 亚洲人妻在线视频看看| 精品美女极品美女在线观看网站| 亚洲国产精品人人做人人爱j| 欧美一区二区人视频| 中文在线精品一区二区| 国产女人黄色一级土豆网站| 2国自产精品手机在线视频| 免费高清在线毛片| 日韩熟女视频精品| 人妻乱人伦中文在线| 精品久久久久久中文字幕202| 麻豆v一区二区三区久久| 老司机精品午夜视频在线| 在线免费看片中文字幕| 亚洲av网站在线观看网站| 免费网站一区二区三区| 国产亚洲精品综合在线网站| 91原创精品视频在线观看| 精品久久久久字幕一区| 看国产日韩av免费| 亚洲高潮喷水无码av电影| 久久中文字幕伊人小说小说| 国产成人三级在线影院| 青草伊人久久综在合线亚洲观看| 亚洲视频精品一区二区三区| 亚洲欧美中文日韩综合| 2018欧美日韩人妻| 国产免费久久精品99re香蕉| 91精品制服丝袜在线影院| 真人少妇高潮久久免费毛片| h视频欧美日韩在线观看| 黄色大片日韩一区二区国产| 久久精品一区二区免费播放| 国产精品美女禄体视频网站| 国产三级精品三级观看| 久久久久久免费精品推荐| 日韩性片一区二区在线观看| 欧美福利一区二区三区| 十八禁一区二区在线播放| 综合久久给合久久狠狠狠97色| 日本在线视频播放7区| 中文字幕第一在线观看视频 | 最新的亚洲不卡的一区在线| 国产69精品久久久久999天美| 人妻久久久精品99系列a片毛| 亚洲精品亚洲人成人网人体| 日本欧美一区二区三区视频麻豆| 中文字幕无线码一区二区三区| 中文字幕日韩一级| www.国产精品毛片| 哦美激情中文字幕亚洲| 最近中文免费一区二区三| 视频一区二区三区资源| 欧美黄片在线免费直播观看视频| 免费观看无遮挡www的小视频| 日韩av免费在线高清观看| 999久久久免费看| 亚洲一区在线免费观看91| 亚洲夫妻免费色黄视频在线播放| 999国产精品视频免费观看| 亚洲精品视频大全在线观看| 国产精品日本一区二区| 隔壁老王国产精品| 蜜臀aⅴ国产精品久久久国产| 夜夜春国产精品不卡一区二区| 岛国毛片视频网站免费| 欧美国产精品bb大区久久| 麻豆精品国产一区二区| 久久久久久一草婷婷视频网| 九九热这里只有精品免费看| 久久久九九九精品视频| 中文高清在线中文字幕日韩| 澳门精品久久国产| 伊人色综合视频一区二区三区| 国产一区精品免费观看| 亚洲日本va午夜中文字幕一区| 免费看国产三级黄片在线看不卡 | 天天爽天天狠久久久综合麻豆 | 日本免费大黄在线观看| 一级做a爱片久久a| 国产av综合网站不卡| 久久99精品在线观看| 人妻美女中文字幕| 国产精品网爆在线观看| 99国产综合亚洲精品| 国产精品美脚玉足脚交欧美图片| 你懂的电影在线观看亚洲成人| 天堂欧美城网站网址| 最好看的中文字幕一区| 少妇9999九九九九在线观看| 国产精品suv一区二区三区6| 久热视频这里只有精品68| 久久国产精品成人免费| 国产999精品视频| 亚洲avav久久| 欧美在线亚洲国产免m观看| 欧美va一级在线观看| 国产日韩精品aⅴ一区二区| 尤物在线国产精品| 亚洲色图日本不卡一区二区| 成人一区二区网站| 国产香蕉97久久精品| 日韩不卡欧美在线一区| 国产又粗又猛又大的视频| 91一区二区观看| 久久国产精品中国久久| 日本中文字幕黄色影院| 免费中文字幕日本| 三上悠亚精品二区| 免费毛片a在线看| 永久黄网站色视频不卡在线观看| 欧洲亚洲国产av性色| 亚洲 欧洲视频免费| 亚洲av一级二级三级| 国产经典三级在线观看视频| 91av一区二区三区在线观看| 国产成人精品在线一二三区| 亚洲最大黄色三级网站| 免费成人午夜电影网站| 午夜av在线影院 国产精品免费看av| 久久精品国产亚洲aaa| 日韩美女精品黄片| 欧美激情一区自拍| 日韩性片一区二区在线观看| 亚洲欧美日本中文字幕| 欧美人妻日韩一区二区三区| 92在线精品视频在线观看| 国产免费av网站入口| 久久久精品人妻一区二区三区| 国产老女人精品一区二区三区| 草草影院ccyy| 欧美一区二区不卡在线视频观看| 99精品国产乱码久久久| 熟女少妇中文字幕| 欧美成人精品免费在线| 樱桃视频一区二区三区| 国产精品一区尤物| a中文字幕在线播放| 99精品欧美一区二区三区蜜臀| 中文av在线人妻 国产日韩网站| 99这里只有精品| 最近国产免费中文字幕| 日韩在线观看精品| 国产va精品免费观看| 91一区二区观看| 亚洲 一区 二区 在线| 欧美视频一区二区免费不卡| 精品少妇一区二区av免费观看| 亚洲熟妇av乱码在线看| 三级成年网站在线观看级爱网 | 免费网站一区二区三区| 亚洲国产成人精品女人久久…| 视频一区视频二区同事| 久久久久久久久久久福利| 日韩欧美综合精品成人在线视频| 亚洲永久精品ww47在线观看| AA级毛片免费观看视频| 宅福利国产欧美亚洲| 亚欧洲精品在线视频| 直接播放日本高清视频在线网站| 国产在线一区二区香蕉 在线| 欧美不卡高清一区二区天堂| 久久久亚洲一区二区影视| 亚洲毛片在线播放一区二区| 免费观看欧美日本一区| 极品久久国产av 久久国产极品av| 国产一区精品免费观看| 国产精品国产三级中文| 亚洲大片在线免费看| 手机在线不卡一区二区免费视频 | 国产成人精品91| 片多多在线观看影视资源| 国产国产精品一区二区| 亚洲精品丝袜高跟久久久| 少妇无人区中文字幕| 国产v精品欧美精品v日韩| 人人爽人人爽69av| 青草av久久一区二区三区| 精品视频精品91美女视频| 最近国产免费中文字幕| 久久久婷婷综合亚洲av| 2021自产拍在线观看视频| 亚洲成人福利资源网| 中文字幕一级特黄大片| 精品国产免费第一区| 久久偷看各类wc女厕嘘嘘| 大象传媒成人在线观看| 欧美日韩国产精彩视频| 欧美日本综合看片国产| 欧美视频一区二区免费不卡| 美女张开腿国产91| 欧美精品v欧洲高清视频在线观看| 5g免费影院永久天天影院在线| 国产午夜污在线观看| 精品乱子伦一区二| 一区中文字幕久久| 亚洲乱码一区二区三区三州91| 欧美日本一道免费一区三区| 国产日本在线播放视频| 日韩和欧美的一区二区| 国产三级精品三级观看| 久久精品国产秦先生| www.91在线视频| 一区二区三区新视频| 男人的天堂α片久久精品| 亚洲精品日韩综合观看成人91| 成人免费黄色免费| 中文字幕免费观看有码| 欧美日韩无线码免费播放| 国产在线一区二区香蕉 在线| 中文字幕一区二区三区精品| 亚洲人妻乱交在线视频| 制服丝袜av无码专区完整版| 嗨久久网一区二区| 在线视频免费看亚洲区| 盗摄偷拍一区二区三区| 亚洲不卡一区二区在线播放| 国产网红在线主播福利96| 伊人依成久久人综合网| 日本人妻欧美视频| 国产精品又爽又黄一区二区三| 久久久久久久性潮| 一夜七次郎国产精品亚洲| 色欧美精品在线小视频| 日韩精品中文字幕人妻免费电影 | 99国产精品丝袜美腿| 水蜜桃精品视频一区二区三区| 国产视频精品一区精品二区| APP在线免费观看视频| 国产精品久久久久久码AV| 亚洲人成人无码www影院| 亚洲男人天堂.av免费观看| 日本久久丰满的少妇三区| 国产在线精品一区二区中文| 老头亚洲黄色中文字幕| 久久国产精品99久久久久久牛牛 | 欧美 日本 国产 在线a∨观看| 国产非洲一区二区三区久久久 | 中文字幕成人亚洲乱码电影| 亚洲欧美中文视频网站| 一区二区三区新视频| 国产白丝一区二区三区| 亚洲码丝袜美女一区二区三区| 免费日韩中文字幕av| 日本一区二区三区清视频| 久一色屋精品视频在线观看| 五月婷婷色综合激情五月| 午夜av在线影院 国产精品免费看av | 夜鲁鲁鲁夜夜综合交换视频| 日韩三级中文字幕免费观看| 手机在线免费看中文字幕av| 久久综合狠狠综合久久97色| 欧美日韩精品亚洲欧美| 2021年国产精品久久| 亚洲福利爱爱爱视频| 午夜短视频在线观看欧美| 亚洲人妻偷拍第一区| 伊人色在线综合网| 欧美成熟美女在线不卡电影| 日本一区二区三区人体| 午夜久久久久久亚洲欧美| 日本中文字幕福利视频| www色播com| 免费人成视频在线观看色网址| 日韩理论亚洲精品| 丰满人妻熟妇乱又伦精品视频三| 丰满女人又爽又紧又丰满| 一本精品99久久精品66不卡| 日韩欧美在线观看91| 国产黄色美女免费看| 麻豆影院 一区二区三区| 人人爽人人澡人人喊| 久久成人大片网站| 久久婷婷国产911| 国产福利一区二区三区四区五区| 成人在线观看美女| 日韩一区二区亚洲| 国产高清吃奶成免费视频网站| 成年人在线免费看av| 国产日本欧美在线看| 日韩欧美午夜久久| 国产偷V国产偷V亚洲高清| 波多野结衣网站一区| 一区二区三区视频区| 二区一区欧洲在线观看| 久久国产精品99久久久久久牛牛| 免费在线看黄国产精品| 老熟女精品视频12区| 91人妻人人爽人人精品| 亚洲欧美丝袜另类在线| 久久视频这里只精品23热在线观看 | 亚洲人人夜夜澡人人爽| 国产精品自产拍在线观看777| 精品人妻伦九区久久片| 国产精品19禁在线观看2021| 两个人免费看的日韩欧美视频| 国产白嫩白浆无套内射在线观看| 久久中文字幕视频网站| 日本人妻久久久中文字幕乱码| 五月激情综合av 五月综合激情av 不卡视频在线观看一二三区 | 中文字幕无线码一区二区三区| 欧产日产国产精品精品| 亚洲av手机版久久精品| 青草av久久一区二区三区 | 91最新精品国产欧美| 亚洲精品无码aⅴ中文字幕| 国产91av免费在线| av天堂资源总部在线观看| 中文字幕一区不卡在线观看的| 国产婷婷91在线精品| 久久婷婷综合缴情亚洲狠狠| 日本黄色视频一区,二区| 欧美www日韩午夜视频| av男人的天堂免费看| 国产成人小视频在线观看| 中文字幕在线观看国产| 精彩视频在线观看一区二区| 亚洲欧洲久久五月激情| 中文字幕日韩观看| 黄色裸体一区二区| 亚洲电影欧美电影一区二区 | 欧美精品一区二区精品久久| 亚洲性色av大片在线播放| 99国产精品丝袜美腿| 一区二区三区四区不卡日韩| 人妻无码中文专区久久av| 亚洲av综合不卡一区| 国产欧美又大又黄| av网址在线免费观看| 亚洲人禽杂交av片久久| 性亚洲欧美久久久| 亚洲乱码一区二区三区三州91 | 99久久国语露脸精品国产不卡| 成人看片在线无限看免费视频| 亚洲av综合不卡一区| 久久久久久免费精品推荐| 日韩中文字幕在线三区| 高颜值露脸极品在线播放| 婷婷六月综合久久| 午夜视频在线观看黄片| 国产精品国产三级国产一区| 中文字幕一页在线| 国产丶亚洲丶欧美综合| 99国产精品丝袜美腿| 99久久精品免费看国产免费软件| 国产精品久久久久综合| 日韩熟妇丰满人妻| 国产精品日韩久久久久| 亚洲熟妇精品久久久久| 免费成人福利视频| 免费观看国产黄p| 日韩欧美国产综合| 亚洲国产午夜高清毛片| 好好热在线视频精品| 日本黄色视频精品一区| 国产人妖ts一区二区| 国产熟女一区二区精品视频| 青草国产在线视频| 日本中文字幕福利视频| 久久精品福利免费观看| 国产成人啪免费视频| 91精品国产自产在线观永久| www.久久成人| 国产日产精品一区二区三区| 91精品国产首页| 国产第一页亚洲一区| 九九99九九99在线精品| 中文字幕亚洲人妻色偷偷久久| 亚洲最大在线观看视频网站| 亚洲性色av大片在线播放| 中文字幕一区二区三区精品| 宅男66lu国产在线观看| 99久久亚洲一区二区三区青草| 久久精品制服丝袜一区二区| 人妻中出中午字幕一区| 日本在线视频 一区| 日本a网站在线观看视频| 国产三级精品三级观看| 中文字幕在线视频日韩精| 2021自产拍在线观看视频| 国产精品国产三级中文| 精品国产成人xxxx三上悠亚| 精品视频中文字幕在线观看| 日韩成年在线观看高清完整版| 亚洲欧美一区国产精品| 精品久久久久久国产中文| mm131美女视频一区二区| 亚洲最大网站在线| 久久五月天一区二区三区| 欧美日韩高清一本大道免费| 免费观看的黄色av| 中文国产成人精品久| 亚洲一区二区色女视频| 日韩精品在线免费观看视频| 国产白嫩白浆无套内射在线观看| 国产真实一区二区三区| 日本理论视频中文字幕| www.99精品| 久碰香蕉视频在线观看精品| 在线观看免费视频亚洲精品| 成人性色生活片全黄| 日韩a√中文字幕在线| 亚洲最大一级黄色片网站| 不卡在线观看免费黄片视频 | 国产精品九九九九九| 国产精品人久久久久久| 亚洲中文字幕资源视频| 欧美专区在线观看一区| 欧美日韩精品成人网站二区| 国产三级精品三级男人的天堂, | 欧洲在线观看网站| 精品国产福利视频| 狠狠操一区二区av| 日韩欧美制服人妻中文字幕| 亚洲熟伦熟女专区五十路| 国产精品精品久久久久久潘金莲| 精品一区二区视频麻豆网神马| 久久夜色精品国产噜噜| 久久久久久深夜免费黄色片| 国产亚洲不卡一区二区三区| 在线看黄视频网站永久免费| 亚洲中文欧av不卡| 夜夜春国产精品不卡一区二区| 中文字幕黄色精品网站| 久久国产精品免费一区六九堂 | 久久国产精品免费一区六九堂| 亚洲精品中文字幕在线| 欧美日韩亚洲国产九色91| 中文字幕av网站免费看| 国产精品美女一区二区| 国产欧美在线视频二区三区| 久在线视视频在线观看| 国产三级精品三级男人的天堂, | 精品久久久久久字幕人妻| 黑人人妻一区二区三区 | 亚洲国产欧美视频在线看| 麻豆蜜桃一区二区三区| 亚洲欧美日韩最新一区| 一区二区三区视频区| 精品久久久久久久久久不卡| 深夜国产一区二区三区在线看 | 精品91久久久久久久久久 | 香蕉社区一区二区三区| 欧美日韩精品亚洲欧美| 日韩在线精品高清制服中文字幕| 亚洲女人的天堂在线观看| 黄网站大全免费国产| 手机福利看片永久免费| 正在播放午夜福利合集| 激情图片区一区二区三区| 国产精品精品久久久久久潘金莲 | 日本国内一区二区三区四区视频| 91在线国产在线一区视频| 人人色在线视频播放| 日韩欧美综合一区| 免费一本色道久久一区熟人区| av成人一区二区三区| 欧美日韩国产精品美女服务网站 | 国产精品一国产av涩爱 | 国产精品一区尤物| 久久国产精品六区| 117美女写真午夜一级| 亚洲av综合色在线| 日韩精品无码av成人观看| 最新午夜毛片视频| 日本黄色三区视频| 在线观看精品国产福利| 亚洲精品aⅴ中文字幕| 91一区二区三区| 亚洲视频欧洲视频在线观看| 丝袜 国产 日韩 另类 美女| 国产成人强伦免费视频网站| 老女人人体欣赏a√s| 日本在线激情免费播放刺激不卡| 色综合欧美在线视频区| 美女网站黄是免费看| 日韩风情中文字幕| 亚洲精品国产自在在线观看l | 99精品久久久久久久免费看蜜月| 国产成人精品亚洲 91| 国产日产精品一区二区三区| 色综合久久久久综合99| 99久久精品免费看国产高清| 一区二区在线观看夜视频| 欧洲va亚洲va在线观看| 美女一区视频看看| 亚洲国产福利精品视频| 日韩永久免费毛片| 日本视频在线视频一区二区| 蜜臀久久精品久久久久打不开| 国产亚洲成人av在线麻豆| 一级特黄aaa大片| 国产精品suv一区二区三区6| 人妻少妇精品久久中文字幕| 一区二区三区国产精品自拍| 免费观看欧美日韩一区二区三区| 欧美日韩国产在线无吗| 欧美少妇内射bb| 亚洲 自拍 欧美 日韩| 日韩欧美一级特黄| 一级片在线免费播放| 国产亚洲成人av在线麻豆| 国产中文字幕久操 | 亚洲最大中文字幕永久网址| 亚洲熟伦熟女专区五十路| 美女少妇喷水久久一区二区| 中文av在线人妻 国产日韩网站| 人人妻人人添人人爽欧美二区| 自拍欧美日韩亚洲| 国产成人久久av977小说| 亚洲精品视频大全在线观看| 粉嫩极品国产在线2020| 伊人久久大香线蕉aⅴ色| JAPANESE日本熟妇伦M0M| 国产精品视频一区二区三区八戒 | 亚洲韩国日本欧美综合| www.91在线视频| 精品99久久久久| 日韩精品1区2区3区久久| 日本一二三区在线观看| 精品丰满少妇av久久久久| 亚洲欧美另类麻豆综合网| 超碰97人人做人人爱亚洲尤物| 国产在线观看片a免费观看| 激情丰满少妇嘿咻一区二区| 挺进朋友人妻雪白的身体韩国电影| 欧美激情一区日韩| 日韩精品巨臀人妻一区二区| 日韩欧美综合精品成人在线视频| 亚洲情综合五月天| 精品网站在线免费观看| 日韩免费一区二区三区高清| 精品国产18禁久久久久久| 亚洲中文欧av不卡| 欧美极品少妇xxxx喷水| 午夜免费在线高清观看av| 女人久久久www免费人成看片| 2020最新国产自产精品| 少妇人妻 中文字幕| 少妇特黄一区二区三区| 亚洲欧美日韩,综合色| 国产精品美女三级| 亚洲日本∨a中文字幕久久| 亚洲精品久久久日韩美女极品| 精品久久久久久国产中文| 色婷婷av777| 欧洲va亚洲va在线观看| 欧美久久久精品中文字幕| 国内精品国产三级国产99| 日韩精品数一数二在线观看| 国产免费av网站入口| 久久成人欧美日韩| 欧美日韩国产精品系列区| 亚洲成人精品字幕| 人妻 中文字幕 精品| 欧美日韩一区二区三区免费视频| 无码精品不卡一区二区三区| 一区二区三区 国产| 天天去色综合久久婷婷| 久久国产欧美日韩视频| 无码人妻丰满熟妇区bbbbxxxx| 亚洲中文字幕不卡一区二区三区| 成人高清在线观看91| 波多野结衣精品无人区| 性视频网站在线亚洲区四虎| 日韩av成人在线观看网站| 水蜜桃精品视频一区二区三区| 99热这里精品在线观看| 黄色一级大片网上免费看| 亚洲国产综合日韩| 亚洲天码中文字幕在线观看| 一区在线不卡av 在线不卡av一区| 精品国产呻吟久久av| 亚洲精品自拍成人| 亚洲中字幕永久在线观看| 最新久久悠悠一区二区| 欧美日韩视频区一| 日韩在线精品高清制服中文字幕| 免费久久久中文字幕观看视频| 久久99国产66精品久久| 日本高清中文字幕网站| 精品久久久久久中文字幕2017| 国产久精品久久久久久久影视| 久热视频这里只有精品68| 久久久亚洲精品va| 一本色道久久爱手机版下载 | 精品国产丝袜美腿| 国产白嫩白浆无套内射在线观看| 亚洲不卡一区二区在线播放| 亚洲av片不卡码在线| 精品久久久中文字幕二区| 五月丁香综合缴情六月小说| 精品中文字幕不卡在线观看| 狠狠做深爱综合婷婷| 丰满岳乱妇久久久| 欧美大片日韩特一级在线观看| 亚洲区另类春色综合小说| 美女视频黄在线观看| 久久精品久久精品久久精品| 日韩欧美精品中文字幕| 一本精品99久久精品66不卡| 中文字幕 欧美一区| 国产成人av在线网站网址| 日本免费啪视频在线观看| 国产亚洲av天天澡人人爽| 亚洲毛片在线播放一区二区| 欧美制服素人中文| 97精品国产高清一区二区三区| 中文字幕在线观看第一页面| 日本人妻少妇久久| 中文字幕中文字幕日韩一区| 18国产精品久久久| 亚洲中文字幕永久免费观看| 视频一区二区三区中文| 国产三区四区五区在线观看| 免费观看欧美日本一区| 国产成人高清精品亚洲| 激情欧美日韩亚洲| 国产精品国产三级国快看| 欧美日韩国产在线人成网站| 韩日av免费在线观看不卡| 69av在线视频| 免费一区二区三区久久| 永久黄网站色视频免费网站| 秋霞电影在线五月婷婷激情综合| 亚洲国产麻豆人人爽人人澡| 国产又粗又猛又爽又黄又大 | 国产久精品久久久久久久影视| 精品国产呻吟久久av| 久久九九国产精品一区| 国产精品美女久久久久∧v爽| 99精品视频这里免费播放| 国产原创在线视频| 亚洲综合视频在线播放| 在线免费观看黄色网址| 亚洲狠狠狠婷婷久久久| 精品一区二区在线观看网站| 国产成人精品一区二三区2022| 中文字幕乱码在线亚洲| 日本成人精品视频在线| 色哟哟哟—国产精品| 人妻熟女一区二区aⅴ| 久久不射av中文字幕| 国产视频精品久久久久不卡| 亚洲加勒比久久88色综合一区| 国产色视频一区二区在线观看| а√ 天堂 在线官网| 午夜免费高清网站| 黄色一区二区免费在线观看| 精品久久欧洲精品| 四虎亚洲精品高清在线观看| 国产又黄又猛又粗又爽的视频边 | 亚洲一区二区三区精品播放| 老头亚洲黄色中文字幕| 免费看毛片的网站在线不卡顿| 亚洲午夜精品福利电影| 成人国产在线视频| 18禁黄国产精品一区二区白浆| n满人妻精品一二区| 欧美一级二级三级一区二区三区| 117美女写真午夜一级| 黄色在线观看免费一区二区三区| 亚洲天堂一区在线观看网站| 国产成人午夜福利在线小电影| 欧美精品自拍视频在线看| 中文字幕免费精品| 套逼按摩久久久久久久网站| 一区二区黄色曰逼视频| 粉嫩一区二区三区| 久9热免费在线视频| 最新日韩av在线天堂| 视频免费观看一区二区| 美女黄色在线观看一区| 亚洲永久欧美精品| 好看精品日本一区二区| 亚洲福利精品视频在线| 国产精品久久久久精k8| 中文字幕亚洲免费观看| b精品调教b欧美| 欧美日韩精品一区二区三区视频播放| 成人 在线 日韩 欧美| 久久精品一中文字幕!| 精品不卡成人在线| 亚洲欧美日本全免费| 国产精品久久毛片影院| 久久精品 国产高清| 欧美成人午夜视频在线| www.一区二区少妇| 视频一区二区三区国内精品| 欧美福利一区二区三区| 精品少妇人妻嫩草av无| 精品极品国产呦在线观看| 亚洲国产a免费一区| 日韩一区二区美色一级片| 午夜片国内精彩视频一区二区| 麻豆中字一区二区md| 国产成人aⅴ在线免播放观看| 成人资源网在线91青青| 2022国产精品福利在线观看| 日韩欧美制服人妻中文字幕 | 亚洲最大的av免费网站| 亚洲欧美另类黄色小说| 精品一区亚洲欧美| 免费国产一区二区三区视频| 韩国一级片久久精品| 日本免费在线观看视频大全| 亚洲中文字幕av电影| 女人久久久www免费人成看片| 亚洲欧美精品店在线观看| 欧美一区二区人视频| 亚洲欧美中文日韩综合| 国产色老汉av网站新址| 国产精品蜜臀久久久| 亚洲另类自拍欧美| 精品极品国产呦在线观看| 国产av综合网站不卡| 国产精品又爽又黄一区二区三 | 韩国日本欧美一区二区视频| 伊人春色在线视频| 亚洲综合视频二区| 视频一区视频二区在线| 欧美系列精品亚洲v在线观看| 小泽玛利亚久久一区二区三区| 国产免费av网站入口| 欧美啪啪婷婷一区| 午夜内射一区二区三区| 亚洲视频精品在线| 新国产精品视频福利免费 | 欧美国产丝袜在线观看| 亚洲乱码日产精品bd在线| 日韩作一区二区三区| 天堂精品视频一区二区在线观看| 六月丁香婷婷色狠狠久久| 国国产精品蜜臀av免费| 人人做天天爱夜夜| 亚洲另类欧美字幕| 国内精品伊人久久久7777| 日韩视频第99页亚洲精品| 丰满女人又爽又紧又丰满| 免费国产一区二区三区视频| 熟女诱惑中文字幕| 性亚洲欧美久久久| 精品国精品国产自在| 成人av网站一区二区三区| 国产精品一区二区三区日日夜夜| www.日本在线视频观看| 精品tv一区二区三区四区| 一区二区三区亚洲网站啪啪| 亚洲免费精品网站—亚洲精品| 美女拍拍拍免费视频观看| 久久成人欧美日韩| 秋霞电影在线五月婷婷激情综合| 精品视频一区精品视频二区| 亚洲中文字幕国产福利| 亚洲精品欧洲精品久久| 亚洲不卡一区二区在线播放| 国产av乱码一区二区| 亚洲第一视频一区二区三区| 日本欧美午夜精品一区二区| www.国产精品毛片| 91精品门事件在线观看| 亚洲免费福利视频网| 手机在线国产一区二区| 老女人人体欣赏a√s| 青草av久久一区二区三区| 丰满岳乱妇久久久| 欧美亚洲激情午夜网| 欧美日韩国产免费一区二区三区| 黄色永久网站在线免费观看 | 蜜臀视频在线一区二区三区| 少妇少妇久久久久久久久| 97超级碰碰碰碰精品| 老熟女精品视频12区| 富二代精品在线观看| 亚洲精品自拍成人| √天堂中文www官网在线| 5g免费影院永久天天影院在线| 亚洲中字字幕中文乱码| www91com国产91| 人妻少妇精品专区性色a∨| 成人免费在线观看免费| 人妻少妇精品97| 这里只有精品视频免费在线观看| 黄色av免费不卡 不卡免费黄色av| 欧美精品v欧洲高清视频在线观看| 日本熟女一区,二区,三区| 狠狠操一区二区av| 日韩av在线中文字幕| 国产激情一区日韩| 黄三级日本一区二区| 中文字幕亚洲人妻色偷偷久久| 亚洲福利午夜视频| av日韩国产一区二区| 精品久久无套内射| 91精品国自在自线免费观看| 亚洲一区二区国产专区| 免费人成视频在线观看网址| 午夜精品久久久久麻豆影视| 日本二区三区视频网站 | 好吊视频一区二区三区四区| 色综五月亚洲欧美婷婷| 国产乱码一区二区三区咪咪爱 | 国产午夜福利精品视频| 国产精品欧美视频在线| 亚洲一区二区免费视频观看| 欧美人妻日韩一区二区三区| 这里只有精品视频免费在线观看| 亚洲av国产综合一区| 久久66久这里精品99| 一区二三区四区乱码在线| a毛看片免费观看视频| 人人爽人人爱欧美一区国产二区 | 欧美日韩在线亚洲一区蜜芽| 亚洲欧美一区国产精品| 99国产一区二区在线| 亚洲精品国产精品国自产在线| 久久亚洲春中文字幕久久久| 日韩成人免费在线中文字幕| 精品一区二区久久人人爽| 观看亚洲免费视频网站大全| 亚洲国产a免费一区| 永久免费国产在线观看| 国产精品一区视频| n满人妻精品一二区| 国产精品久久久久久码AV| 乱中年女人伦中文字幕久久| 亚洲a∨精品一区二区三区导航| 欧美亚洲国产卡一| 人人妻人人澡人人爽欧美视频| 久久夜色 精品一区| 亚洲男人第一av天堂| 免费裸体视频一区二区| 亚洲精品第一综合久久| 久久精品在线视频| 精品婷婷在线观看| 国产片av片永久免费观看| 亚洲欧美精品久久久久影院| 国产二区不卡av 国产av一区二卡| 成人免费视频在线看| 亚洲天堂三级视频| 美女极度色诱视频国产| 日韩 高清 经典 中文| 欧美综合不卡顿视频在线观看| 欧美三区,亚洲三区| 国产精品综合自拍第一页 | 中文字幕人妻欲求不满| 亚洲欧美综合在线不卡| 美女毛片在线免费观看| 国产欧美日韩亚洲视频| 亚洲成av人片精品久久久久久| 国产婷婷91在线精品| 黄色大片在线观看一区二区| 国产欧美综合第一页| 九九99热久久精品在线5| 你懂的电影在线观看亚洲成人| 国内精品自产视频在线播放| 一区二区三区高清在线视频| 熟女乱免费一区二区| 亚洲高清一二三区在线播放视频| 国产精品极品一区二区免费视频| 99国产精品丝袜久久久久久| 最近免费欧美日韩在线视频| 亚洲不卡一区二区在线播放| 欧美淫片a级免费| 黄色在线观看免费一区二区三区| 中文字幕一二三四区视频| 精品亚洲女同一区二区| 国产一区一一区不卡电影| 日韩精品免费视频播放| 国产一区二区三区新网址| 欧美色妞一区二区在线观看| 玖玖资源麻豆中文字幕久久| 欧美无乱码久久久免费午夜一区| av天堂资源总部在线观看| 中文字幕人妻16p| xxxx国产精品视频| 美女视频十八禁免费在线观看| 欧美亚视频在线中文字幕免费| 精品一区少妇视频| 91精品网站天堂系列在线播放| 精品国产乱码久久久久夜夜嗨| 午夜福利欧美激情福利| 亚洲中文字幕av电影| 亚洲熟妇精品久久久久| 国产精品一国产av涩爱| 美女视频国产精品| 亚洲视频播放在线| 茄子视频国产精品| 国产精品久久久久久女同| av丝袜美腿中文字幕| 日本精品久久久久久久久免费| 国产999精品视频| 91精品视频一区二区三区| 麻豆一区二区91久久久| 激情视频一区二区三区在线观看 | 欧美精品一区二区精品久久| 99在线观看视频婷婷| 精品成人午夜久久久久久| 视频一区二区三区偷窥自拍| 婷婷国产成人久久精品| 日韩香蕉国产一区二区三区| 日韩欧美高清国产视频| 欧美日韩成人三级| 国产精品久久久影视| 欧美一区二区在线午夜| 九九99热久久精品在线5| 亚洲午夜永久精品免费| 天堂欧美城网站网址| av网站大全在线观看| 伊人激情精品电影第一页| 欧美日韩大尺度一区二区| 国产又粗又猛又大的视频| www.成人a视频在线观看| 欧美一级亚洲欧洲日本| 精品久久欧洲精品| 黄色av免费日韩一区二区| 欧美A级AⅤ在线播放| 国产欧美手机在线观看| 欧洲va亚洲va在线观看| 国产成人精品视频一区| 亚洲视频在线观看免费网站| 在线视频免费看亚洲区| 日本 国产 欧美 精品| 九九在线精品视频久久| 亚洲成人日韩欧美伊人一区| 亚洲欧美国产丝袜网站| 中文字幕亚欧美在线视频| 午夜精品久久久久久久99黑人| 免费的欧美一区二区| 国产又黄又猛又爽又粗| 少妇精品偷拍高潮少妇在线观看| 亚洲黄片一区二区| 一个人看的亚洲国产av| 最新日韩中文字幕在线播放| 欧美日韩中文字幕一区二区樱花| 熟女少妇中文自拍欧美亚洲激情| 在线高清国语成人网站| 日本高清视频不卡码| 熟妇女人妻丰满少妇中文字幕| 东京热久久只有精品6| 国产成人在线二区三区| 亚洲欧美卡通武侠古典偷拍| 中文字幕亚洲精品乱码app| 蜜臀午夜精品一区二区| 成人 在线 日韩 欧美| 青草伊人久久综在合线亚洲观看 | 国产精品国产精品国不卡懂色| 视频在线免费观看亚洲| 日韩av人人夜夜澡人人爽| 亚洲欧美日韩在线播放| 午夜久久黄色视频| 久久国产精品免费一区二区三区| 久久99久久精品| 后入翘臀少妇一区二区三区| 精品久久午夜免费| 国产亚洲精品a在线观看| 极品少妇视频一区二区| 老司机成人av在线| av中文不卡在线播放| 韩国日本欧美一区二区视频| 黄片视频在线观看看| 亚洲一区二区精品午夜| 国产精品尹人在线| 人妻少妇精品97| 91人妻人人爽人人精品| 天堂在线观看av| 国产欧美在线观看精品一区污| 18欧美一区在线观看| 一区二区三区不卡在线| 久久夜色精品国产aⅴ| av在线一区二区免费播放 | 亚洲国产高清久久久| 好好热在线视频精品| 日韩免费一区二区三区高清| 久久深夜国产福利| 国产白丝一区二区三区| h电影在线播放av| 国产v一区二区高清| 日本视频在线视频一区二区| 国产福利片一区二区| 亚洲a版天堂一区二区三区 | 一本色道久久爱手机版下载| 日本人妻久久久中文字幕乱码| 欧美中文三级在线观看| 人人爽人人爱欧美一区国产二区 | 国肉精品国产三级国产av| 久碰香蕉视频在线观看精品| 亚洲 欧洲视频免费| 精品国产网站在线观看91| av网址不卡在线免费观看| 欧美在线高清免费| 国产精品久久久久精k8| 中文字幕对少妇高潮| 久久蜜臀亚洲一区二区| 午夜福利在线播放免费| 国产精品久久久久综合| 国产又粗又爽欧美激情| 中文字幕免费日韩| 亚洲精品中文字幕999| 另类 欧美 日韩 一区| 青青一区二区三区91| 99国产成人免费视频| 成人午夜av电影在线观看| www91com国产91| 欧日韩视频777888| 一区二区三区四区不卡日韩| 最新精品国产av中文字幕| 亚洲韩国日本欧美综合| 久久66久这里精品99| 字幕乱码日韩在线观看| 精品黄色免费中文电影在线播放| 亚洲第一视频一区二区三区| 日韩一区二区黄不卡电影| 亚洲天堂av成人在线| 亚州中文字幕久久| 中文字幕网在线中文免费| 亚洲爱爱视频完整版中文字幕| 日韩成人av一区在线观看| 国产日韩欧美在线精品| 99最新亚洲人妻在线电影| 国产精品麻豆久久| 91人妻人人爽人人狠| www.在线视频中文字幕| 国产又粗又猛又大的视频| av资源在线免费观看| 国产一级黄色毛片| 国产亚洲欧美专区在线| 茄子视频国产在线观看| 内射一区二区精品视频在线观看| 成人亚洲欧美视频在线观看| 国产一二三区视频免费观看| 一区二区三区国产视频| 久久久婷婷综合亚洲av| 国产在线精品观看| 亚洲国产欧美日韩一级| 在线中文字幕日韩在线| 免费久久一区二区| 欧美久久久精品中文字幕| 亚洲毛片在线播放一区二区| 中文字幕第99页| 日本在线视频 一区| 韩国一区二区精品视频| 亚洲a∨精品一区二区三区导航 | 天堂精品三级在线观看| 亚洲国产精品卡一卡二| 国产人成精品午夜在线观看| 国产欧美日韩视频| 99精品久久99久久久久久| www视频在线观看| 久久夜色精品国产aⅴ| 久久久久久久综合岛国免费观看 | 在线视频中文字幕1区| 久久国产视频一区二区| 欧美日韩成人在线免费| 国产女人黄色一级土豆网站| 成人乱码一区二区三区av| 日本久久一区二区三区精品 | 日本高清中文字幕网站| 久久久久久黄色片| 国产女同福利在线看| 天天摸天天摸天天天天看| 国产精品特级毛片一区二区三区| 色婷婷影院一区二区乱码| 在线观看国产高清免费不卡色| 中文字幕av一区二区三区人妻少妇| 欧美一级大黄大色毛片视频| 人妻中文字幕顶级欧美熟妇高清| 日本人妻欧美视频| 樱桃视频一区二区三区| 日本动漫黄h在线观看免费| 国产精品久久毛片影院| 18禁黄国产精品一区二区白浆| 91一区二区观看| 日韩一区二区亚洲| 欧美精品一区在线免费观看| 日韩免费网站久久| 国产 欧美日韩视频区| 亚洲精品无码aⅴ中文字幕 | 日本美女久久一区二区| 欧美综合视频一区二区 | 欧美性少妇xxxx极品高清hd| 日韩av电影在线不卡观看| 国产精品电影久久久久电影网| 欧美日本一道免费一区三区| 日韩影院成人精品| 激情免费视频一区二区三区| 少妇精品偷拍高潮少妇在线观看| 欧美精品产品在线观看| 在线观看永久中文字幕| 欧美另类图片视频无弹跳第一页| 久久激情综合六月天| 免费乱理伦片奇优影院| 伊人久久大香线蕉aⅴ色| 日韩一区二区精品视频在线播放| 国产欧美视频日韩| 日本免费一区二区视频网站| 99热这里精品在线观看| 日韩人妻欧美人妻| 最新女同一区二区av网站| 在线观看日本一区不卡视频| 国产免费一区二区三区播放| 在线免费观看av中文字幕| 这里有精品婷婷狠狠狠操| 欧美精品产品在线观看| 亚洲色图欧美在线视频一区二区| 国产三级床上黄色视频| b精品调教b欧美| 久久久久久久综合岛国免费观看 | 在线观看不卡日韩视频| 亚洲最大欧美日韩色| 美女视频十八禁免费在线观看| 人妻有码av中文幕久久| 精彩视频在线观看一区二区| 日韩精品毛片人妻特黄| 国产精品视频bt天堂| 99热在线观看精品国产| 2020国产在线| 黄色一区二区免费在线观看| 中文字幕日韩综合久久| 欧美自拍另类亚洲| 99九九精品视频| 国产成人三级在线影院| 2023小小精品女教师日韩精品亚洲人成在线播放 | av男人的天堂免费看| 午夜久久久久久亚洲欧美| 人人妻免费在线视频| 日韩精品成人一区| 日韩亚洲国产av影片| 中文字幕成人精品久久不卡| 国产精品久久免费成年大片| 亚洲激情五月天久久| 国产精品无卡无在线播放| 成人乱码一区二区三区av| 欧美激情一区自拍| 蜜桃视频在线观看免费| 国产三区四区五区在线观看| 久久av一区二区三区软件| 亚洲欧美日韩一区天堂| xxxwww欧美性| 久一精品视频在线观看| 国产av巨作久久久久久久| 亚洲欧美国产大片| 日韩欧美综合精品成人在线视频| 精品婷婷在线观看| 韩国一区二区三区黄色录像| 欧美一区二区三区四区亚洲视频| 欧美日韩黄色一区| 熟妇女人妻丰满少妇中文字幕| 久久99热精品免费观看| 日本一二三区在线观看| 亚洲国产福利精品视频| 亚洲avav久久| 欧美一区二区人视频| 欧美一区二区三区不卡在线播放 | 国内精品久久99| 久久久久久久久久久福利| av在线中文字幕天堂| 亚洲观看在线www| 成人免费在线观看av网站| 在线观看高清视频一区二区三区| 中文一区二区三区人妻| 国产人妖一区二区在线| 亚洲天堂日韩国产av| 欧美成人精品一二三区| 少妇高潮喷水91在线看片| 免费看毛片的网站在线不卡顿| 欧美不卡一区二区视频在线观看| 手机在线观看视频欧美日韩| 一区二区三区午夜免费福利视频| 精品网站在线免费观看| 亚洲狠狠狠婷婷久久久| 久久久尹人香蕉网| 欧美 日韩 人妻 高清 中文| 欧洲亚洲国产av性色| 在线黄色不卡av 在线观看不卡黄色av| 国产午夜福利精品视频| 欧美国产日韩日本在线| 日韩欧美国产激情在线观看 | 不卡视频在线观看一二三区| 国产首页亚洲精品第一页| 亚洲精品麻豆一二三区| 欧美精选视频一区二区| 日本中文字幕一区精品| 国产激情精品一区二区三区波野| 精品亚洲成人7777在线观看| 日本精品电影一区二区| 亚洲国产a免费一区| 少妇热一区二区三区| 午夜免费视频a区| 亚洲日本精品一级| 天天爽天天狠久久久综合麻豆| 影音先锋女人aa鲁色资源| 手机在线免费看黄色av| 国产精品久久久久密桃噜噜噜| 精品久久久久久人妻无| 亚洲视频播放在线| 中文字幕一二三区在线| 国产精品久久久久1卡2卡| 久久精品在线23高清| 国产与激情一区av| 91精品一区二区三区在线观看| 日韩视频欧美亚洲国产| 国产在线成人免费视频色婷婷| 91av国产一区在线观看| 午夜一级毛片亚洲欧洲天堂| 日韩欧美制服人妻中文字幕| 久久国产精品一国产精品金尊| 国产成人一区二怕在线观看| 精品网站在线观看免费| 亚洲欧洲中文字幕在线| 国产亚洲成人av在线麻豆| 免费看国产三级黄片在线看不卡| 伊人一区二区三区四区黄片 | 欧美人在线观看免费高| 999久久久免费看| 欧美不卡在线免费视频| 在线不卡中文字幕播放| 日韩在线观看精品| 极品少妇视频一区二区| av一区二区三区色| 国产成av不卡在线观看| 国产乱码一区二区视频| 亚洲成av片中文字幕在线观看| 最新本道日韩欧美中文字幕| 在线观看人成国产| 日本一区不卡高清更新区| 成人午夜爽爽爽免费视频| 亚洲成人福利资源网| 日韩不卡欧美在线一区| 大伊香蕉精品二区视频在线| 九九热在线精品视频观看| 久久香蕉国产线看观看av| 天天爽天天狠久久久综合麻豆| 99国产一区二区在线| 九九精品国产一区| 一区二区三区国产视频| 国产爽人人爽人人片av| 国产真实一区二区三区| 黄瓜视频在线免费观看| 国产精品久久久久精k8| 麻豆蜜桃一区二区三区| 日韩作一区二区三区| 国产揄拍高清国内精品对白| 亚洲v韩国v欧美v精品| 欧美视频在线观看一区二区免费| 老司机成人av在线| 欧美一区二区在线午夜| 亚洲国产精品日韩在线观看| 亚洲性xxxxx极品少妇喷水| 亚洲欧美中文在线v日本| 2021国产一区二区| 亚洲欧美在线综合视频| 一本色道久久综合亚洲精品高| 国产偷V国产偷V亚洲高清| 精品人妻伦九区久久片| 久久综合精品91| 色婷婷亚洲成人网| 亚洲欧美另类日韩国产古典精品 | 精品欧美va在线观看| 亚洲综合国产精品视频| av资源在线免费观看| 操美女视频在线观看一区二区| 最新精品国产av中文字幕| 国产精品进线69影院在线| 亚洲 婷婷 在线一区二区| 国产区中文字幕在线| √最新版天堂资源网在线下载 | 夜色福利在线视频观看| 国模精品无码一区二区三| 亚洲国产一区二区电影| 成人在线视频观看日韩| 三上悠亚精品二区| 欧美日韩黄色一区| 久久国产精品久久99| 欧美亚洲日本国产综合网| 精品久久久久久中文字幕202| 国产精品19禁在线观看2021| 国产成人精品99| 亚洲国产精品女主播| 国产精品蜜臀久久久| 精品欧美一区二区三区播放| 中文字幕网站久久| 欧美 亚洲 另类在线| 精品乱子伦一区二| 日韩亚洲人成网站在线播放| 欧美日韩精品一区二区三区视频播放 | 最新国产の精品合集bt伙计| 免费看高清性色生活片| 亚洲一区二区色女视频| 国产美女福利最新网址在线观看| 真人少妇高潮久久免费毛片| 制服丝袜av无码专区完整版| 亚洲国产三级不卡| 菠萝视频完整播放在线观看免费| 亚洲第一视频一区二区三区| 亚洲精品国偷拍自产在线观看蜜臀| 精品日本一区一二区| 亚洲日本乱码视频在线观看| 亚洲欧美另类成人一区| 亚洲a∨精品一区二区三区导航| 日本中文字幕不卡| 色婷婷影院一区二区乱码| 视频一区二区观看| 中文字幕黄色精品网站| 精品一区二区大香蕉视频偷拍| 一区二区三区三乱码精品毛片| 视频一区二区三区资源| 日本少妇高潮久久久久久久久| 国产自产21区激情综合一区| 高清蜜桃久久久av| 国产精品黄色自拍网站| av天堂一区二区三区精品| 在线免费日韩av| 噜噜麻豆九九久久| 国产偷V国产偷V亚洲高清| 伊人国产亚洲精品| 亚洲一区二区三区中| 免费高清在线毛片| 日韩欧美福利一区二区三区| 国产精品久久久久1卡2卡| 免费看高潮久久久久久久久| 四虎在线免费播放| 久久国产深夜福利| 国产v精品欧美精品v日韩| 一区二区三区国产精品杏吧| 国产精品麻豆久久| 日本人妻少妇久久| 少妇高潮喷水91在线看片| 国产理论片精品在线观看| 精品乱码久久久久久蜜桃| 精品99久久久久| 中文字幕亚洲免费观看| 亚洲欧美精品久久久久影院| 欧美成人小视频在线免费观看| 免费国产在线视频自拍白浆| 国产成人高清精品亚洲| 最新最好看的高清中文字幕视频 | 亚洲视频播放在线| 精品人妻伦九区久久片| 久久av一区二区三区软件| 久久国产这里有精品视频 | 日韩欧美视频免费一区二区三区| 天天久久狠狠夜夜| 精品国产福利一区二区在线| 在线视频 日韩 欧美 一区| 欧美制服素人中文| 99久久99久久精品国产图片| 国产一级二级三级在线| 国产首页亚洲精品第一页| 日本黄色视频不卡一区二区 | 亚洲av综合色在线| 国产精品无卡无在线播放| 欧美日韩tv免费观看| 久久久亚洲精品va| 国产人妖一区二区在线| 久久婷婷综合缴情亚洲狠狠| 欧美日韩在线播放色| 亚洲狠狠色成人综合网| 国产v精品欧美精品v日韩| 91欧美日韩国产在线 | 视频一区中文字幕亚洲| 日韩激情视频在线一区二区| 日韩av大全在线播放| 国产精品自在线拍国产手机版| 午夜福利精品影院| 爱爱免费视频96xx久久| 午夜久久久久久亚洲欧美| 国产美女在线播放那么小| 国产日产精品亚洲视频| 91精品门事件在线观看| 一区,二区,三区的精品伦理片| 久久精品在线视频| 老熟女乱淫视频一区二区| 色欲av亚洲一区无码少妇| 50老熟妇女一区二区三区| 日本在线观看视频不卡一区| 国产av不卡久久久| 精品啪啪视频一区二区三区| 日韩欧美一区二区在线观看| 亚洲欧美一区二三区| 制服 丝袜 日韩 中文| 亚洲电影在线免费观看网站| 国产av成人中文字幕| 一区二区三区久久久影视| 丁香婷婷综合精品六月初| 欧美精品一区二区精品久久 | 中文字幕中文字幕日韩一区| 一夜七次郎国产精品亚洲| 日本久久一区二区三区精品| 久久精品 国产高清| 欧美日韩91久久| 欧美亚洲一级片在线观看 | 亚洲一区二区电影在线| 丁香婷婷综合精品六月初| 中文字幕永久在线播放| 韩日一级人添人人澡人人妻精品| 国产精品一区二区久久| 国产福利小视频免费在线观看| 亚洲欧洲日韩福利片| 国产乱国产乱300精品| 蜜桃视频app色版永久免费| 丁香啪啪激情综合开心网| 最新亚洲人妻系列| 日韩涩涩一区二区三区| 白浆 一区二区 久久| 国产女同福利在线看| 国产精品白丝袜久久久久| av黄色免费手机在线播放网址| 国产亚洲精品综合在线网站| 亚洲专区欧美久久| 麻豆果冻精品一区二区| 欧美亚洲色图一区二区| 在线观看成人日韩视频| 91精品门事件在线观看| 久久精品一区二区三区动漫| 精品欧美视频免费在线观看| 亚洲另类自拍欧美| 日本欧美一区二区三区视频麻豆| 美女黄网站久久久久| 国产成人精品午夜在线观看| 中文字幕亚欧美在线视频| 欧美日本一道免费一区三区| 最新中文字幕一区视频| 国产成人精品日本亚洲网站伊| 在线中文字幕日韩一区| 久久精品国产亚洲v神秘四虎 | 国产又粗又猛又大的视频| 亚洲中文字幕资源视频| 亚洲国产黄片一区二区| 国产片av片永久免费观看| 亚洲欧美在线一区中文字幕 | 日本欧美在线观看视频一区| 久久中文字幕福利| 欧美 亚洲 另类在线| 亚洲国产电影在线观看精品 | 欧美色综合二区三区四区| 欧美亚洲日本视频| 亚洲乱码卡一卡二卡新区中国| 亚洲人成人无码www影院| 波多野结衣网站一区| 九九热这里只有精品6| 久久精品店一区二区三区| 精品乱子区一区二区三| 国产美女女优网站免费观看| 亚洲天堂一区二区三区在线观看| 国产精品久久久久久久久电影网| 久久国产精品免费一区六九堂| 免费观看国产黄p| 18欧美一区在线观看| 日韩亚洲人成网站在线播放| 中文字幕日产乱码欧美| 偷国产乱人伦偷精品视频香蕉| 色欲天天网站欧美成人福利网| 亚洲欧美日韩一区天堂| 欧美日韩x8x8视频在线观看| 91精品门事件在线观看| 国产精品揄拍一区二区久久| 中美性猛交xxxx乱大交3| 日韩一区二区三区成人在线| 久久亚洲欧美精品| 国产三级在线视频 一区二区三区 久久99热精品免费观看 | 国产精品综合色区在线观看不| 久久少妇呻吟视频久久久| 2021自产拍在线观看视频| 99热精品在线观看白浆| 国产一级片免费观看| 国产精品网站的黄色| 自由成熟的性色视频免费观看| 日韩av片无码一区二区不卡| 91麻豆产精品久久久久久| 中文字幕综合在线观看~| 一级黄色大片中文字幕| 熟妇女人妻丰满少妇中文字幕| 偷自视频视频区免费| 久久久久久久久久久福利| 两性视频久久香蕉| 中文字幕第一在线观看视频| 偷拍亚洲欧美精品| 在线亚洲天堂色播av电影| 弄得少妇高潮一区二区网站 | 九九热这里只有国产精品视频| 黄色网址网站 久久| 不卡高清av影片在线观看| 亚洲天堂一二三四区av| 国产精品日本一区二区视频| 精品卡通动漫亚洲v第一页| 精品日本一区一二区| 亚洲欧洲久久五月激情| 日本免费大黄在线观看| 国产精品视频福利| 黄色一区二区日韩| 国产高清乱码精品一区二区三区| 99久久免费精品二区| 亚洲最大中文字幕永久网址| 一区二区午夜在线| 亚洲不卡一级电影观看| 亚洲伦理偷拍欧美,另类,色图| 国产精品一国产av涩爱| 在线黄色免费网站| 国产日韩欧美视频一区二区三区 | 国产高清一区国产高清二区| 在线视频观看免费亚洲| 日韩精品数一数二在线观看| 日韩高清一道本中文字幕| 色婷婷久久久wg精品| 国产亚洲丝袜av在线播放| a毛看片免费观看视频| 国产黄色大片一区二区在线观看| 中文字幕96久久激情亚洲精品| 亚洲天堂影院二区在线看| 国产三级精品三级在线看| 激情视频中文字幕人妻久久久久 | av网址不卡在线免费观看| 亚洲欧洲久久五月激情| 久久久尹人香蕉网| 中文字幕精品人妻丝袜| 国产白丝一区二区三区| 91av91亚洲欧美视频在线| 日韩风情中文字幕| 久久夜色 精品一区| 99久久精品久精品| 好好热在线视频精品| 欧美日韩国产三级一区二区三区| 亚洲欧洲中文字幕在线| 亚洲伊人久久大香线蕉影院| 午夜视频国际在线观看不卡| 国产激情精品一区二区三区波野| 国产av中文字幕片| 少妇高潮喷水久久久免费| 亚洲国产精品成人v在线不卡| 亚洲 自拍 另类 中文字幕| 欧美国产精品bb大区久久| 在线观看亚洲成人| 久久精品一区二区三区动漫| 日韩欧美福利一区二区三区| 91黄色成人网站网址在线观看| 国产精品久久72| 在线视频欧美亚洲| 黄色中文字幕网站| 欧美精品vieoex性欧美| 久久午夜精品免费看| 日本a网站在线观看视频| 亚洲狠狠色成人综合网| 免费观看一区二区三区视频| 亚洲精品一区二区三区视频| 激情综合婷婷丁香五月尤物| 国产黄色精品久久久| 亚洲综合久久久888| 人人妻人人添人人爽欧美二区| 美日韩在线调教变态av| 在线免费观看不卡av网站| 夜色福利在线视频观看| 日本熟女一区,二区,三区| 日本欧美精品中文| 亚洲永久免费中文字幕在线播放| 国产91在线播放9色不卡| 国产模特在线一区二区| 免费播放亚洲一级片| 人人色在线视频播放| 偷窥少妇久久久久久久久| 日韩中文精品视频| 久久久女人妻96一区精品香蕉| 日韩一区二区黄不卡电影| 内射日韩精品久久| 久久久久久蜜桃精品| 最新国产视频一区在线播放| 美女又黄又免费网站| 92看看一区二区三区在线观看| 亚洲一区在线免费观看91| 亚洲精品国产96| 亚洲综合在线天堂在线观看| 国产午夜福利在线观看免费视频| 日韩理论亚洲精品| 粉嫩av夜夜澡人人爽人人| 国产亚洲av美女网站在线看| 自拍欧美日韩亚洲| 亚洲成人av在线播放观看| 午夜中文字幕日韩综合| 视频在线观看一区二区| 拍拍国产电影天堂| 亚洲特级黄片久久久| 日本视频在线视频一区二区| 国产大学生情侣呻吟视频| 国产高清不卡在线观看av| 神马午夜精品二区| 亚洲一区二区电影在线| 99久久精品免费看国产高清| 91亚洲日本aⅴ精品一区二区| 在线视频欧美精品一区二区| 日韩视频欧美亚洲国产| 成人免费在线观看网站| 精品国自产拍在线观看| 久久久亚洲老熟妇熟女| 成人漫画免费观看入口| 黄片免费观看视频一区二区| 久久久久久蜜桃精品| 91人妻人人爽人人精品| 日韩欧美在线观看91| 亚洲欧美另类黄色小说| 在线中文字幕日韩一区| 日本人妻少妇视频专区| 在线 91 大神精品| 在线网址中文字幕在线观看| 成人资源网在线91青青| 男人的天堂a在线免费观看| 久久caoporn国产免费| 中文字幕av日韩一区| 国产精品一区二区不卡正在播放| 久久精品视频在线视频| 在线网址中文字幕在线观看| 亚洲中文字幕视频电影播放| 久久人妻中文av 久久中文人妻av| 国产高潮流白浆视频在线观看| 欧美喷潮极限另类视频| 国产精品最新乱视频二区| 成人一级片免费观看| 欧美人与动牲交精品| 最新国产拍偷乱偷精品| 国产日韩欧美视频一区二区三区 | 少妇无套内射呻吟高潮久久久| 国产专区 日韩精品| 91最新精品国产欧美| 国产又粗又猛又爽黄| 一级少妇一区二区| 成人特级毛片69免费观看| 欧美一级一片在线观看| 在线 亚洲 综合 第一页| 国自产拍精品偷拍视频| 亚洲爱爱视频完整版中文字幕| 手机在线免费看中文字幕av| 国产一区精品免费观看 | 人人妻人人添人人爽日韩欧美| 韩日av免费在线观看不卡| 中文字幕久操丝袜| 国产黄色精品久久久| 久久精品制服丝袜一区二区 | 国产精品日韩久久久久| 国产精品一级片在线观看| 久久人综合中文字幕色婷婷| 国产色视频一区在线播放| 日本免费啪视频在线观看| 亚洲中文字幕日本无线码| 欧美激情轻欧美一区二区| 国产一区二区三区视频免费播放| 日韩av中文字幕第一| 日本人成精品视频在线免费观看| 中文字幕第99页| 69堂国产成人精品网址| 欧美人人做人人爽人人喊| 一区,二区,三区的精品伦理片| 亚洲熟妇无码av另类vr影视| 后入翘臀少妇一区二区三区| 88久久精品国产欧美一区二区| 欧美美臀电影国产精品一区二区| 久久精品成人一区二区三区| 中文字幕久久精品波多野结百度| 成人av在线播放免费| 最新久久悠悠一区二区| 亚洲一区二区精品午夜| 免费观看污视频网站| 欧美日韩国产电影中文字幕| 国产精品suv一区二区三区6| 久久精品亚洲精品2020| 中文字幕第5页在线视频| 操美女国产一区二区三区| 日本欧美精品中文| 亚洲中文字幕日本无线码| 国产精品视频在这里有精品| 欧美系列精品亚洲v在线观看| av天堂一区二区三区精品| av日韩国产一区二区| 精品一线中文字幕| 中文字幕日韩一级片在线观看| av免费网站一区二区| 亚洲成av人不卡无码影片| 少妇人妻 中文字幕| 欧美中文三级在线观看| 国产一区二区 福利| 亚洲中文字幕va福利| 国产一区二区不卡在线 性色| 在线麻豆一区国产| 亚洲国产综合性亚洲综合性| 亚洲中文字幕乱码人妻2| 亚洲精品第一综合久久| 亚洲一区二区三区中| 国产成人在线综合精品| 亚洲综合欧美精品| 蜜臀av一区二区精品字幕| 中文字幕永久在线播放| 丰满人妻日韩一二三区不卡| 手机看片日韩国产| 黄片污污视频免费在线观看| 亚洲日本精品在线观看| 无码人妻丰满熟妇区bbbbxxxx| 国产免费久久精品99re香蕉| 久久精品99久久香蕉欧美| 久久天天躁日日躁狠狠躁| 国产午夜美女免费视频| 午夜在线成年人免费观看| 国产成人真人视频| 国产av高清精品久久| 精品国产伦理在线| 国产一区二区 福利| 成人免费黄色免费| 精品乱子区一区二区三| 欧洲久久精品一区二区三区| 久久精品国产护士电影九一| 欧美日韩黄色一区| 免费成人午夜电影网站| 毛片地址在线播放| 久久中文人妻av 狠狠久久久五月天| 老头亚洲黄色中文字幕| 亚洲a∨国产av综合av| 精品国产亚洲电影在线观看| 久久一区二区成人精品| 亚洲另类自拍欧美| 你懂的电影在线观看亚洲成人| 99热这里只有精品6在线观看| 91黄色成人网站网址在线观看 | 亚洲精品成人真人在线观看| 精品久久久久字幕一区| 亚洲一区二区国产专区| 狠狠爱91精品婷婷| 青青在线精品是免费视频观看| 午夜福利视频1区2区| 亚洲av啊啊啊在线观看| 亚州欧美激情小说另类| 日本在线视频播放7区| 人妻无码中文专区久久av| 国产av高清精品久久| 国产精品视频网站二区| 不卡高清av影片在线观看| 免费网站日本a级淫片免费看 | 国产精品久久久久久女同| 免费人成黄页在线观看69| 成人av天堂中文在线| 国产成人午夜福利在线小电影| JULIA手机在线观看精品 国产福利精品av综合导导航 | av中文不卡在线播放| 欧美日韩美腿丝袜一区在线视频| 五十路熟女视频一区和二区| 欧洲欧美人成视频在线观看| 国产又粗又猛又爽av| 国产成人啪免费视频| 亚洲一区在线免费观看91| 看国产日韩av免费| 最近国产免费中文字幕| 国产成人精品91| 这里有精品婷婷狠狠狠操| 精品久久久久久中文字幕2017| 日韩欧美国产日本在线| 日本高清视频www在线观看| 粉嫩白浆国产精品| 久久中文字幕视频网站| 全黄久久久久a级全毛片| 成人av一区二区三区蜜臀| 国产日韩在线观看亚洲精品| 在线天堂av网站 在线免费av天堂| 日韩欧美一区二区三区四区在线 | 色嫒精品一区二区三区| 日本人妻久久久中文字幕乱码| 国产欧美又大又黄| 黄色的视频一区二区三区| 少妇淫真视频一区二区| 日韩成人熟女一区二区| 国产特级毛片aaaaaa| 不卡在线视频精品| 国产精品一区二区三区日日夜夜| 国产视频精品一区精品二区| 欧美日本最新在线一区视频| av天堂吧手机版在线观看| 精品丰满少妇av久久久久| 日韩乱码av一区二区| 成人福利精品视频在线观看| 欧美日韩免费播放一区二区| 亚洲永久欧美精品| 在线观看免费亚洲黄色片| 国产精品欧美日韩一区二区 | 午夜免费啪视频在线观看| 在线一级片一区二区三区| 成a人片亚洲日本久久| 国产成人av在线播放| 精品a∨视频在线观看一区二区| 亚洲成人免费播放免费播放| 欧美精品久久99久久在免费线| 国产真实一区二区三区| 国产日韩在线观看亚洲| 国产视频精品久久久久不卡| 成人国产精品入口免费视频| 亚洲区日韩区国产区在线| 岛国免费一区二区三区| 国产福利一区二区在线视频| 国产成人在线综合精品| 欧美极品少妇xxxx喷水| 99视频国产精品| 国产又粗又长黄片| 鲁啊鲁啊鲁在线视频播放| 天堂精品视频一区二区在线观看 | 国产精品三级三级三级| 国产人妖av一区二区在线观看| 国产mv在线免费观看| 亚洲av片不卡码在线| 美女视频国产精品| 国产精品午夜免费观看| 中文字幕亚欧美在线视频| 日韩免费一区二区三区高清| 色欧美精品在线小视频| 欧美日韩在线精品观看| 日韩中文字幕在线观看的| 国产人妖ts一区二区| 国产欧美日韩免费精品| 日韩影院成人精品| 中国美女免费黄片视频| 亚洲欧美极品美女| 九九在线观看精品视频sese| av伊人久久免费久久atav| 伊人春色在线视频| 国产成人真人视频| 精品国产区一区二区三在线观看 | 国产老女人精品一区二区三区| 国产福利一区二区在线视频| www成人的在线视频| 弄得少妇高潮一区二区网站| 91久久久久久人妻| 国产精品99久久久久久网曝门| 91精品福利一区二区三区| 老熟女精品视频12区| 久久中文人妻av 狠狠久久久五月天| 中文字幕久久精品波多野结百度| 成人午夜视频网站免费在线观看 | 国产香蕉97久久精品| 中文字幕乱码在线亚洲| 色午夜一av男人的天堂| 日韩欧美一区二区久久婷婷| 国产精品一区二区三区免费视频| 欧美A级AⅤ在线播放| 人妻激情偷乱一区二区三| 亚洲码国产精品高潮在线| 亚洲一级淫片在线高清播放| 久一色屋精品视频在线观看| 亚洲视频精品一区二区三区| 国产日韩欧美在线精品| 黄色永久网站在线免费观看| 无人区乱码一区二区三区国产| 精品视频在线观看免费观看| 日本不卡视频在线观看网站| 国产高潮流白浆视频在线观看| 欧美日本人体视频一区| 欧洲97色综合成人网| 亚洲 综合 校园 欧美小说| 一区二区三区视频免费看| 黑人欧美一区二区三区4p| 久在线视视频在线观看| 伊人久久狠狠综合| 成人a小视频在线观看| 亚洲人妻久久久久中文字幕| 亚洲欧美卡通武侠古典偷拍| 欧美国产日韩激情在线| 极品美女一区二区三区| 日韩影院一区二区三区在线观看| 亚洲av网站网址在线观看| 国产精品一区二区三区日日夜夜| 欧美国产丝袜在线观看| 蜜臀av国产精品一区二区| 午夜免费在线高清观看av| 中文字幕 欧美激情露出| 在线观看啪视频中文字幕| 男人的天堂午夜精品视频在线| a亚洲国内精品免费黄片在线| 精品一区二区三区四区国产片| 97精品国产高清一区二区三区| 亚洲天堂三级视频| 国产亚洲精品日韩欧美| 亚洲欧美在线一区中文字幕| 成人免费视频福利网| h视频欧美日韩在线观看| 成人一区二区网站| 欧美亚洲一级片在线观看 | 午夜偷拍的视频久久久免费大全| 在线中文字幕乱码六| 国产看片一区二区三区| 99久久精品免费国产视频| 欧美性生活片视频一区二区三区| 久久精品国产亚洲av成蜜 | 最新的亚洲不卡的一区在线| 国产区中文字幕在线| 欧美一级在线视频一区二区 | 国产毛片精品视频| 久久亚洲欧美一二三区| 久久精品视频这里免费观看| 成年人黄片免费在线播放| 亚洲国产成人在线观看免费| 丝瓜视频在线免费观看| 午夜免费在线高清观看av| 亚洲欧美中文在线v日本| 午夜福利国产成人a∨在线观看| 99国产一区二区在线| 日韩人妻一区二区爽| 国产精品巨乳美女| 日韩在线精品高清制服中文字幕 | 国产麻豆一区二区三区视频| 在线观看啪视频中文字幕| 日韩专区免费网站| 精品国产区一区二区三在线观看| 秋霞电影在线五月婷婷激情综合| 国产精品久久国产亚洲av站长| 亚洲 自拍 欧美 日韩| 久久婷婷久久一区二区三区| 国语自产少妇精品视频| 国产成人精品日本亚洲网站伊| 91久久久久久人妻| 国产 欧美 日本 中文字幕| 日本一区二区三区人体| 久久夜色精品国产噜噜| 人妻满足中文字幕| 国产精品久久免费一区dyd| 亚洲韩国日本欧美综合 | 日本免费不卡中文字幕| 日韩女优 国产高清在线播放| 国产在线精品观看| 在线观看美女色网站| 91精品国产自产在线在老师啪| 少妇高潮喷水91在线看片| 五月激情综合av 五月综合激情av| 免费网站一区二区三区| 久久婷婷久久一区二区三区| 国产在线精品成人欧美| 国产成年码av片在线观看| 九色在线视频精品| 亚洲 欧美 在线 不卡| 国产成人在线二区三区| 国产精品麻豆久久| 欧美日韩精品亚洲欧美| 蜜桃视频在线观看网站麻豆| 欧美一级在线视频一区二区| 亚洲av 免费在线| 中文字幕三区在线播放| 日韩一区国产一级| 一区二区三区视频日韩| 亚洲人成亚洲人 成人在线观看| 亚洲精品视频大全在线观看| 不卡在线观看中文字幕| 中文在线精品一区二区| 日本在线激情免费播放刺激不卡| 国产精品美女一区二区| h视频欧美日韩在线观看| 久一午夜福利视频| 亚洲成av人不卡无码影片| 一区二区三区视频免费看| 天天综合网在线观看| 亚洲大片在线免费看| 久久国产精品久久99| 国产精品99久久久| 亚洲精品一区二区三区视频| 天堂av好男人亚洲精品| 国产精品欧美激情久久| 美女网黄视频在线观看不卡| 免费毛片在线观看视频一区二区 | 午夜福利视频一区二区| 国产福利一区二区三区四区五区| 成人在线观看一区三区| 中文字幕人妻丝袜系列| 亚洲欧美日韩,综合色| 在线观看国产高清免费不卡色| 免费人成视频在线观看色网址| 中文字幕一页在线| 片多多在线观看影视资源| 91精品国产人妻国产毛片| 国产美女女优网站免费观看| 久久精品视频在线视频 | 日本高清一区二区三区水蜜桃| 国产嫩草官方永久入口| 日本 国产 欧美 精品| 宅男66lu国产在线观看| 伊人精品久久久久| 日韩欧美国产免费看清风阁| 丰满人妻少妇一区二区三区蜜桃| 中文字幕永久在线播放| 亚洲三区视频二区| 午夜欧美熟妇一区不卡| 国产亚洲精品18禁91九色| 国产精品一区二区三区有码| 精品日韩久久久久久久| 免费人成视频在线观看网站| 国内少妇人妻偷人精品解说| 免费国产一级二级三级 | 亚洲av成人不卡一区二区| 91精品一区二区| 亚洲精品www久久久久久下| 丰满无码人妻熟妇无码区| 国产刺激国产精品国产二区| 免费视频中文一区二区| 中文字幕亚洲国产有码| 99精品久久99久久久久久| 国产在线中文字幕视频| 国产美女又黄又爽又色网站| 在线观看免费亚洲黄色片| 免费人成黄页在线观看69| 久久久久久免费精品推荐| 国产精品久久久久秋霞鲁丝| 色国产精品免费观看入口| 精品久久午夜免费| 成人免费看黄yyy456| 国产又色又爽视频在线观看| 夜夜夜夜一区二区| 亚洲av日韩av不卡在线电影| www.日本在线视频观看| 菠萝视频完整播放在线观看免费| 窝窝欧洲国产精品午夜看片| 一区二区三区日韩视频| 99精品久久久久久久免费看蜜月| 好看精品日本一区二区| 日本一二三区在线观看| 欧美日韩在线观看一区| 亚洲国产一区二区a毛片变态| 午夜xx免费视频| 中文字幕高清在线一区二区三区| 亚洲男人天堂一区| 欧美乱码精品一区| 精品熟女久久久久浪| 国产午夜美女免费视频| 欧美,日韩久久中文字幕1| 人妻中文字幕免费视频| 伊人精品久久久久| 视频一区视频二区同事| 午夜1区二区不卡视频| 亚洲成v人片一区二区| 中文字幕亚洲国产有码| 亚洲欧美极品美女| 91蜜臀精品视频| 少妇无套内射呻吟高潮久久久| 日本人成精品视频在线免费观看| 国产精品99久久久| 国产老女人精品一区二区三区 | 99精品视频这里免费播放| 免费看高清性色生活片| 91精品一区二区三区在线观看| 亚洲熟妇精品久久久久| 国产一区在线播放av| 日本一级淫片免费放| 免费一区二区三区高清| 国产精品久久一二三区| av在线中文字幕有码| 中文字幕三区在线播放| 亚洲国产a免费一区| 中文字幕av网站免费看| 亚洲福利国产精品| 一区二区三区视频日韩| 久久久免费精品电影| 欧美亚洲日本三区| 精品丰满少妇av久久久久| 日韩精品美女福利视频| 国产又黄又猛又粗又爽的视频边| 国产免费av网站入口| 欧美极品视频中文字幕| 日本在线精品中文视频| 亚洲男人第一av天堂| 狠狠色丁香婷婷久久综合考虑| 国产欧美视频日韩| 国产精品四区在线观看| 最新中文字幕高清在线视频| 国产老女人精品一区二区三区| 99日本在线视频播放| 亚洲天堂影院二区在线看| 欧美99久久精品乱码影视| av免费国产在线播放| 国产高清丝袜美女在线一区| av网站大全在线观看| 免费人成视频在线观看网址| 久久久久久蜜桃精品| 中文字幕亚洲精品乱码app| 欧美图片国产精品| 久久亚洲女同第一区综合| 亚洲精品视频在线观看一卡| 国产欧美视频日韩| 国产电影在线观看一区| 欧美国产日韩激情在线| 在线观看永久免费av| 日本一区二区三区日本视频| 在线观看免费日韩av电影| 中文字幕一级特黄大片| 精品国产一区二区三区四区四| 99热这里只有精品免费在线| av在线一区二区免费播放| 成人美女av网站在线观看| 外国一区2区黄色片| 亚洲中文欧美日韩| 日韩风情中文字幕| 亚洲人妻偷拍第一区| 亚洲视频久久一区二区三区| 92福利在线播放无毒不卡| 日韩中文字幕在线观看的| 欧洲成年人av在线播放| 狠狠爱五月天久久综合| 国产精品美女视频一区二区三区| 日韩精品欧美激情电影在线观看| 日本免费在线观看视频大全 | 欧美精品一区二区精品久久| 国产精品四虎影视| 亚洲国产一区二区三| 一区二区三区四区不卡日韩| 亚洲av手机版久久精品 | 亚洲福利精品视频在线| 免费在线观看最新影视剧| 福利视频一区二区入口| 日韩第一页在线观看| 激情欧美日韩亚洲| 欧美日韩极品在线观看| 99久无码中文字幕一本久道| 91精品视频免费在线观看的| 免费一级欧美在线观看| 精品视频一区少妇| 亚洲中文字幕日韩免费| 国产亚洲精品18禁91九色| 精品少妇一级二级三级| 国产日韩欧美一区二区三区东京热 | 精品久久久久久久久久不卡| 欧美精品老妇一区二区| 欧美激情精品久久久久久不卡| 日韩欧美一区二区年费| 精品999久久久久久中文字幕| 国产乱码精品一区二区vv| 亚洲天码中文字幕在线观看| 在线观看成人免费高清| 精品国自产拍在线观看| 亚洲成色www久久网站不卡| 精品国产成人xxxx三上悠亚| 国产在视频线精品www666| 中出中文字幕制服在线观看| 国模精品无码一区二区三| 亚洲aⅴ国产av综合av| 国产精品一区二区不卡正在播放| 99久久婷婷国产精品青草| 欧美亚洲精品日韩精品| 青青一区二区三区91| 一区中文字幕久久| 亚洲日本乱码视频在线观看| 色婷婷久久久wg精品| 亚洲精品午夜久久久久久app| 99人人爽人人妻人人澡| 日韩精品女优一区二区三区| 国产成人精品电影在线播放| 激情欧美日韩亚洲| 亚洲精品自产在线免费播放| 国产老女人精品一区二区三区| 国产一区在线播放av| 国产日韩欧美综合妖精视频| 在线观看日本一区不卡视频| 色综合欧美在线视频区 | 欧美中文字幕6666| 国产精品久久一二三区| 一级欧美大片免费网站| 国产亚洲一二三区精品| 欧洲精品在线观看| 国产美女又黄又爽又色网站| 在线亚洲天堂色播av电影| 久久夜色精品国产噜噜| 最新亚洲中文av在线不卡| 亚洲欧美日本一卡二卡三卡| 亚洲国产日韩在线观看视频| 久久国内精品自在自线400部| 午夜福利欧美激情福利| 亚洲中文字幕资源视频| 亚洲人成在线免费网址| 蜜桃人妻一区二区| 亚洲国产精品久久久久秋霞不卡| 国产视频精品久久久久不卡| 亚洲人妻久久久久中文字幕| 亚洲国产成人在线观看免费| 精品久久午夜精品电影| 精品视频中文字幕在线观看| 黄色免费在线国产| 日本二区三区视频网站| 国产伊人精品99| 亚洲电影在线免费观看网站| 日韩av大全在线播放| 国产高潮又爽又无遮挡又免费| 国产美女高潮一区二区三区| 精品人妻少妇久久久久综合| 国产粉嫩一区二区三区| 欧美,日韩久久中文字幕1| 日韩三级另类视频| 婷婷爽人人爽人人片| 日韩人妻欧美人妻| 欧美1区二区三区| 国产视频精品久久久久不卡| 黄色免费网址大全| 少妇激情av一区二区三区蜜臀| 久久久婷婷综合亚洲av| 亚洲视频在线不卡| 欧美日韩高潮喷水在线观看视频| 日韩二区中文字幕在线| 色婷婷亚洲成人网| 最新日韩av在线天堂| 国产 中文字幕乱码熟女| 欧美 日本 国产 在线a∨观看| 综合久久五十路熟女| 偷拍亚洲欧美精品| 日韩欧美中文字幕一区二区三区 | 久久精品一级黄片| 人妻美女交中文字幕| 国日韩精品一区二区三区| 亚洲欧美日韩中文久久| 久久精品国产亚洲av麻豆影视| 国产内射久久精品| 久久精品国产99久久无毒不卡| 蜜臀av一区二区精品字幕| 国产高清乱码精品一区二区三区| 韩国精品在线观看| 国产嫩草一区二区三区在线观看| 欧美日本综合看片国产| 日本高清视频www在线观看| 日本二区三区视频网站| 精品98av一区二区三区| 欧美福利一区二区三区| 亚洲av网站在线观看网站| 在线播放bt天堂在线播放视频| 欧美人成视频一区二区| 亚洲最大的天堂av网站| 欧美亚洲日本三区| 中文字幕人妻丝袜系列| 亚洲欧美中文字幕制服诱惑| 黄色片在线免费观看精品| 亚洲一区二区国产专区| 最新中文字幕在线观看一区 | 99久久精品人妻二区| 天天摸夜夜操免费视频| 欧美一区二区三区视频区| 精品亚洲不卡一区二区三区四区| 精品视频精品91美女视频| 91在线播放国产精品| 日本高清中文字幕网站| 午夜久久久久久久| 老头亚洲黄色中文字幕| 亚洲av手机版久久精品| 欧美人人做人人爽人人喊| 亚洲一区二区三区片| 久久免费视频精品在线| 99国产精品丝袜久久久久久| 亚洲成人日韩国产欧美| 成人免费在线观看av网站| 一区视频三区国产| 成人午夜淫片免费在线观看| 国产精品久久一二三区| 亚洲区中文字幕在线| 99精品人妻专区在线视频| 日韩视频在线播放网站免费| 久一午夜福利视频| 97精品久久人人爽| 手机在线欧美日韩精品| 久久免费一区二区| 熟女露脸国产一区| 国产国产一区二区三区| 国产精品99久久久久久网曝门| 中文字幕在线视频观看网站| 国产日韩精品aⅴ一区二区| 日本人成精品视频在线免费观看| 亚洲国产一区二区电影| 国产午夜精品一区二区三区欧美| 精品98av一区二区三区| 超碰蜜臀在线一区二区| 一级少妇一区二区| 国产精品亚洲综合色| 老头亚洲黄色中文字幕| 国产精品黄大片在线播放| 高清精品一区二区三区| 视频一区二区视频在线| 欧洲久久精品一区二区三区| 婷婷激情丁香久久 | 欧美成人午夜视频在线| 亚洲一区三级视频| 在线观看免费日韩av电影| 黄网站色成年片在线观看| 国产日韩在线观看亚洲| 国产免费久久精品99re香蕉| 变态视频一区二区三区| 欧美激情综合自拍| 丁香啪啪激情综合开心网| 人人做天天爱夜夜| 久久精品国产精品| 狠狠综合久久久久综合网小蛇| 91久久精品福利| 99精品久久久久久久免费看蜜月| 国产你懂的网址中文字幕| 最新日韩精品在线免费观看| 看国产日韩av免费| 免费观看的黄色av| 黄网站色视频免费观看| 视频免费1区二区三区| 中文字幕不卡在线日韩| 成人免费视频福利网| 日韩欧美国产网站在线观看| 日本永久在线中文字幕| 久久久久国产精品亚洲欧美| 久久久久久深夜免费黄色片| 亚洲不卡av二区三区四区| 亚洲人妻乱交在线视频| 精品一区二区三区在线视频观看| 国产在线精品一区二区中文 | 在线一区二区三区亚洲| 日日骚国产欧美一区二区| 91蜜臀精品视频| 日韩人妻无码精品系列| 久久精品免费人妻| 婷婷六月久久综合丁香76| 欧美日韩精品成人网站二区| 美女黄网站久久久久| 欧美诱惑在线观看视频一区| 国产成人精品一区二三区2022| 欧美日韩国产精品系列区| 国产综合精品在线| 中文字幕亚洲免费在线观看| av男人天堂综合网| 激情自拍亚洲欧美日韩| 中文字幕对少妇高潮| 中文字幕久久精品波多野结百度 | 蜜臀精品视频在线一区| 毛片地址在线播放| 日本欧美一区二区三区337p| 国产99视频精品免费视看6| 亚洲视频在线免费观看一区| 日本一区二区免费黄色| 久久66热re国产毛片基地| 2021最新国产精品网站| 国产激情精品一区二区三区波野| 伊人一区二区三区四区黄片| 国产亚洲av天天澡人人爽| 亚欧美精品一区二区三区四区| 欧美成人精品免费在线| 精品乱码中文一区二区三区| 亚洲中文字幕不卡一区二区三区| 手机在线免费看中文字幕av| 亚洲区中文字幕在线| 亚洲国产成人精品女人久久… | 日本人妻内射高清| 欧洲视频在线观看| 99在线观看视频婷婷| 日本欧美在线观看视频一区| 亚洲综合av日韩综合av| 国产福利区一区二区| 国产高清色视频在线观看| a级港片免费完整在线观看| 久久香蕉国产线看观看手机| 精品久久久久久综合网| 人妻中文字幕不卡有码视频| 黄色裸体一区二区| 2023小小精品女教师日韩精品亚洲人成在线播放 | 粉嫩白浆国产精品| 久久亚洲欧美国产精品| 精品久久久久久综合网| 99国产精品国产精品毛片| 久久久久一区二区三区不卡| 久久久精品人妻一区二区三区蜜桃| 亚洲一区在线视频在线播放| 在线观看欧美人成| 最新国产拍偷乱偷精品| 中文字幕av免费在线观看| 国产精品久久久久久久久电影网| 欧美野外中文字幕第一页| 日本午夜少妇福利电影在线观看 | 日韩欧美中文字幕一区二区三区| 国产成人一区二区三区影院播放| 91久久精品国产中文一区| 美女最超碰免费观看| 欧美国产日韩日本在线| 久久久999中文字幕| 欧美 亚洲,视频一区| 国产高清色视频在线观看| 亚瑟视频高清在线观看网站| 多毛丰满日本熟妇| 国产特级毛片aaaaaa| www视频在线观看| 国产97碰公开免费视频一区 | 在线观看亚洲国产一区二区三区| 日韩欧美国产制服在线| 国产成人久久久99| 国产精品久久久久AV| 久久精品熟女少妇亚洲av| 日本久久一区二区三区精品| www.在线视频中文字幕| 综合亚洲综合图区网友自拍| 国产精品久久免费一区dyd| 亚洲s码欧洲m码国产av| 免费成人午夜电影网站| 国产精品免费手机在线网站| 精品一区二区久久人人爽| 欧美精品 在线观看| 日韩精品高清在线一区| a v天堂中文字幕在线| 亚洲中文字幕永码永久在线| 中文字幕av免费专区资源| 88久久精品国产欧美一区二区| 国产精品日韩久久久久| 国产免费99精品9片| 亚洲中国av在线免费观看| 欧美激情轻欧美一区二区| 在线视频欧美亚洲| 久久精品国产亚洲av成蜜| 欧美一区二区人视频| 99视频国产精品| 日韩一区国产一级| 影音先锋女人aa鲁色资源| 亚洲国产精品久久久久秋霞不卡 | 亚洲av午夜十八禁福利影视| 亚洲电影在线免费观看网站| 在线中文字幕日韩一区| 日韩欧美一区二区三区四区在线| 大香蕉国产一区在线最新| 亚洲成色www久久网站不卡| 欧美成人午夜一卡二卡在线视频| 日韩欧美一级特黄| 国产v片不卡在线看| 日本成人精品视频在线| 亚洲欧美国产中文日韩| 亚洲视频欧洲视频在线观看| 欧美激情啪啪啪一区二区| 免费黄网站久久成人精品| 亚洲综合另类专区在线| 国产福利片一区二区| 日本欧美一区二区三区337p| 亚洲精品成人在线免费| 精品乱码一区二区三区不卡视频| 视频免费1区二区三区| 亚洲伊人久久大香线蕉影院| 日韩久久福利一区二区| 亚洲电影在线免费观看网站| av黄色免费手机在线播放网址| 欧美不卡视频在线观看| 亚洲av国产综合一区| 狠狠色丁香婷婷久久综合考虑| 2020国产在线| 亚洲AV中文乱码一区二| 欧美精品一区二区在线免费观看| 在线观看免人成视频亚洲| 不卡视频在线观看一二三区| 国产美女在线播放那么小| 久久蜜臀亚洲一区二区| av影院一区二区三区| 欧美亚洲色图一区二区| 国产日韩在线观看亚洲| 少妇人妻综合久久中文字幕蜜| 亚洲中文字幕第 30页| 18av国产一区在线观看| 国产精品美脚玉足脚交欧美图片| 91精品久久久久久久久久中文| 久久久这里只有精品视频16| 亚洲欧洲精品不卡av | 女性久久久久国产精品毛片| 亚洲美女福利视频网址| 久久视频这里只精品23热在线观看| 亚洲精品国产96| 国产在视频线精品www666| 成人在线观看亚洲第一视频| 黄色一大片免费在线观看| 欧美日本一道免费一区三区 | 国产欧美日韩免费精品| 日韩成人免费在线中文字幕| 午夜一级毛片亚洲欧洲天堂| 午夜在线成年人免费观看| 91精品视频免费在线观看| 国产男女裸体做爰爽爽| 最新午夜毛片视频| 精品a∨视频在线观看一区二区| 亚洲精品成人网站在线观看| 成人午夜在线免费看一级片| 91av91亚洲欧美视频在线| 亚洲精品中文字幕制服诱惑| 欧美大片日韩特一级在线观看| 国产福利一区视频二区| 日韩人妻无码精品系列| 成a人片亚洲日本久久| 国产传媒av网站在线观看| 精品国产成人xxxx三上悠亚| 国产日韩欧美综合妖精视频| 少妇精品偷拍高潮少妇在线观看 | 665566综合中文字幕在线| 亚洲av成人不卡一区二区 | 中文字幕乱码在线亚洲| 欧美高清观看一区二区三区| 久久WWW免费人成人片| 亚洲天堂网av在线| 女同一区二区三区| 国产成人精品在线一二三区| 欧美日韩久久亚洲| 国产精品9在线观看| 日韩不卡欧美在线一区| 91在线播放国产精品| 亚洲欧美在线综合视频| 青青在线精品是免费视频观看| 日韩精品中文字幕一区二区三区| 精品视频精品91美女视频| 精品卡通动漫亚洲v第一页| 亚洲一区久久精品| 国产欧美日韩亚洲视频| 久久国产精品免费一区六九堂| 可以免费观看的亚洲av| 亚洲天堂一区二区三区在线观看| 中文字幕在线精品乱码麻豆| 五月婷欧美国产中文字幕| 国产精品免费视频网站| 欧美色综合二区三区四区| 欧美日韩极品在线观看| 久久一区二区成人精品| 国产精品久久久久综合| 欧美日韩在线视频免费完整| 五月婷婷,六月丁香| 日韩性片一区二区在线观看| 两个人免费看的日韩欧美视频| 在线精品免费观看视频| 激情免费视频一区二区三区| 国产一区二区三区视频免费播放| 老司机成人av在线| 中文亚洲欧美日韩无线码| 美女张开腿国产91| 一区二区三区不卡乱码| 久久久999国产精品视频| 国产熟女福利精品最新| 91人妻人人爽人人精品| 日韩人妻无码精品系列| 亚洲夫妻免费色黄视频在线播放| 国产成人久久久99| 精品最新av在线播放| 亚洲毛片在线播放一区二区| 四虎亚洲精品高清在线观看| 亚洲国产另类精品视频| 人妻一区二区三区人妻黄色| 亚洲欧美另类成人一区| 国产成人a一区二区三区| 欧美福利一区二区三区| 欧美精品在线免费| 国产美女又黄又爽又色网站| 熟女少妇中文字幕| 亚洲AV中文乱码一区二| 国产精品一区二区不卡正在播放| 日韩三级另类视频| 一区二区三区不卡乱码| 99最新亚洲人妻在线电影| 国产美女网站一区二区| 成人在线观看美女| 最新日韩中文字幕在线播放| 国产精品福利视频合集| 中文字幕在线播放日韩| 国产成人a一区二区三区| 精品a∨视频在线观看一区二区 | 国产又粗又猛又爽黄| 国产乱码一区二区视频| 国产真实迷jian系列在线网站| 日韩不卡在线免费观看视频| 青草国产在线视频| 欧美国产日韩激情在线| 69堂国产成人精品网址| 久久久久久人妻精品一区按摩| 丰满女人又爽又紧又丰满| 国产成人sm精品视频免费网站| 国产乱码一区二区视频| 国产suv精品一区二区四五| 激情福利在线观看| 粉嫩极品国产在线2020| 欧美日韩在线一区不卡| 桃色视频在线免费观看| 国产嫩草一区二区三区在线观看| 日韩成人免费在线中文字幕| 亚韩一区二区在线中文字幕| 99国产成人免费视频| 蜜桃视频app色版永久免费| 在线黄色免费网站| 国产99久久久国产精品免费看| 国产精品日本一区二区| 中文字幕高清在线一区二区三区| 亚洲女人的天堂在线观看| 人妻中文字幕免费视频| 国产福利手机在线| 免费看毛片的网站在线不卡顿| 99久久精品久精品| 亚洲 欧洲 自拍 美女| 日韩不卡中文在线视频网站| 免费黄网站久久成人精品| 国产片av片永久免费观看| 日韩人妻大片观看网址| 国产成人精品免高潮费视频 | 亚洲av网站在线观看网站| 一区在线不卡av 在线不卡av一区| 国产在线精品成人欧美| 欧美一区二区不卡在线视频观看| 精品夜夜嗨av一区二区| 亚洲女人被插尤物视频| 国产suv精品一区二区五免费| 日本黄色视频精品一区| 视频欧美日韩亚洲| 福利片网站视频在线观看| 久久精品视频东京热| 欧洲亚洲国产av性色| 美女张开腿国产91| 国产区中文字幕在线| 久久www成人片免费看| 久久这里只有精彩视频香蕉 | 亚洲综合在线日韩av| 国产熟人精品一区二区| 亚洲精品www久久久久久下| 日韩欧美午夜久久| 亚洲毛片在线播放一区二区| 在线观看成人免费高清| 日本一区二区三区免费区| 欧美一区二区三区放荡老妇| 国产精品九九九九九| 亚洲天堂一区在线观看网站| 最新中文字幕高清在线视频| 国产精品国产三级国产一区| 国产精品一区二区久久| 亚洲片国产一区一级在线| 亚洲av国产综合一区| 一区二区在线看91| 欧美一区二区三区放荡老妇| 国产一区二区三区视频免费播放| 亚洲精品www久久久久久下| 国产福利一区二区在线视频 | 精品不卡成人在线| 亚洲中文字幕一区熟女| 日韩av在线中文字幕| 在线视频观看免费亚洲| 亚洲综合国产精品视频| 国产欧美日韩免费精品| 免费看国产三级黄片在线看不卡| 在线你懂的精品日韩在线| 精品一区二区久久人人爽| 蜜臀av午夜精品福利一区二区| 美女丝袜在线观看一区二区 | 精品最新av在线播放| 可以免费观看的亚洲av| 日韩免费一区二区三区高清| 亚洲男人天堂一区| 激情国产av做激情国产爱| 国产精品视频网站二区| 免费一区二区三区久久| 国产麻豆一区二区三区视频| 国产网红主播av国内精品| 国内精品久久久久久久| 亚洲超碰中文字幕在线| 亚洲天堂网欧美在线观看| 亚洲精品a在线观看视频| 综合久久二区免费| 欧洲日韩中文在线| 国产精品视频精彩视频| 亚洲精品国产自在在线观看l| 午夜dj国产精品| 999久久精品人妻| 亚洲av综合一区在线| 欧洲亚洲国产av性色| 亚洲精品久久久久午夜aⅴ| 精品少妇人妻嫩草av无| 黄三级日本一区二区| 日韩看片一区二区三区| 亚欧美精品一区二区三区四区| 国产又粗又猛又爽又黄又大| 成人在线视频免费播放| 欧美日韩国产在线无吗| 高清中文字幕免费不卡视频| 看片网址av中文字幕在线观看| 91人妻人人爽人人澡精品| 亚洲精品中文字幕制服诱惑| 亚洲国产精品综合久久2007| 在线观看国产高清免费不卡色| 国产精品自产拍在线观看777| 国产精品一区视频| 99久久精品久精品| 五月天婷婷缴情五月免费观看| 成人性色生活片全黄| 欧美国产日韩激情在线| 亚洲最大欧美日韩色| 久久精品国产亚洲aⅴ性色| 2022国产精品福利在线观看| 天天爱天天做天天爽夜夜揉| 亚洲精品成人真人在线观看| 国产精品久久久久久久久电影网| 国产中文字幕在线视频一区| 人人妻人人添人人爽日韩欧美| 亚洲天堂av乱码一区二区| 欧美激情一区自拍| 91蜜臀精品视频| 精品亚洲女同一区二区| 日本美女黄p在线观看| 国产三区四区五区在线观看| 亚洲最新人妻在线| 久久精品久久久久观看99| 亚洲欧美日韩一区天堂 | 亚洲欧美一区二区成人精品| 欧美人与禽猛交乱配视频| 久久天天躁日日躁狠狠躁| 亚洲avav久久| 欧美乱强伦xxxxx高潮| 国产精品久久久精品免费| 亚洲成av人片精品久久久久久| segou视频在线观看| 欧美黄色三级一区| 伊人激情精品电影第一页| 99久久精品久精品| xxxx国产精品视频| 国产男女裸体做爰爽爽| 国产白嫩白浆无套内射在线观看| 秋霞电影在线五月婷婷激情综合| 九九在线精品视频久久| 日韩人妻无码精品久久久不卡| 一本一本久久a久久精品综合麻豆| 中文字幕久久只有精品| 久久国产这里有精品视频| 亚洲精品午夜久久久久久app| 中文字幕免费精品| 91欧美日韩国产在线| 中文字幕第二十一页在线| 久久精品一区二区免费播放| 国产色老汉av网站新址| 成人午夜视频网站免费在线观看| 亚洲日本乱码视频在线观看| √最新版天堂资源网在线下载 | 狠狠躁夜夜躁人人爽天天高潮| 亚洲区另类春色综合小说| 亚洲国产欧美日韩一级| 亚欧美精品一区二区三区四区| 在线网址中文字幕在线观看| 色嫒精品一区二区三区| 不卡在线观看中文字幕| 国产久精品久久久久久久影视| 最新久久悠悠一区二区| 欧美日韩在线亚洲一区蜜芽| 久久精品国产亚洲av成蜜| 欧美成年一区二区| 欧美系列精品亚洲v在线观看| 国产午夜福利在线观看播放| 国产成人高清视频免费| 国产一区二区 福利| 全黄久久久久a级全毛片| 久久一区二区成人精品| 亚洲天堂最新地址在线观看| 亚洲国产欧美在线观看片不卡| 成人av天堂中文在线| 中文字幕国产日韩在线观看| 国产黄色美女免费看| 欧美美女一区二区免费| 亚洲综合在线天堂在线观看| 激情亚洲熟女视频狠狠操| 人妻满足中文字幕| 国语自产少妇精品视频| 国产成人aⅴ在线免播放观看| 亚洲s码欧洲m码国产av| www.国产av美女| 久久精品在线23高清| 中文乱码一区二区视频| 亚洲一区三级视频| 久久人综合中文字幕色婷婷| 国产在线精品观看| 精品视频一区二区久久| 亚洲成人福利资源网| 人人爽人人爽69av| 欧美精品v日韩精品| 国产精品久久久内射| 精品人妻久久久久久久久久久久| 久久婷婷综合缴情亚洲狠狠| 欧美一区精品中文字幕| www.99精品| 成人综合网一区二区| 99久久免费精品二区| 狠狠爱91精品婷婷| 日本黄色视频一区,二区| 人人爽人人爱欧美一区国产二区| 人妻久久久精品99系列a片毛| 欧美大片日韩特一级在线观看| www.久久成人| 超碰蜜臀在线一区二区| 亚洲美女福利视频网址| 亚洲国产综合久久精品| 久久天天躁日日躁狠狠躁| 人人爽人人澡人人喊| 日韩91麻豆精品视频在线观看| www91com国产91| 亚洲中文字幕va福利| 免费观看在线不卡毛片| 综合久久五十路熟女| 色综合网欧美久久网| 中文字幕亚欧美在线视频| 日韩激情视频在线一区二区| 黄色大片日韩一区二区国产| 在线精品免费观看视频| 亚洲高清免费在线观看视频| 久久精品国产护士电影九一| 久久这里只有精彩视频香蕉| 亚洲爱爱视频完整版中文字幕| 欧美va一级在线观看| 老熟女无套内射国产视频 | 中文字幕在线乱码观看av| 2021精品国产片久久免费看| 亚洲激情五月天久久| 美女毛片在线免费观看| 性亚洲欧美久久久| 在线网址中文字幕在线观看| 国产又粗又猛又爽av| 精品一区二区三区在线视频观看 | 精品一区二区在线观看网站| 免费的欧美一区二区| 久久国内精品自在自线400部| 在线观看成人美女| 蜜臀aⅴ国产精品久久久国产| h视频欧美日韩在线观看| 综合久久五十路熟女| 99九九精品视频| 99精品国产免费观看视频| 午夜欧美久久久久| 国产香蕉97久久精品| 国产精品中文字幕一区二区三区| 亚洲美女高清aⅴ免费视频| 欧美日韩亚洲国产九色91| 免费人成视频在线观看色网址| 婷婷六月综合久久| 国产69精品久久久久久久久久 | 免费成人av日韩 免费成人日韩av| 久久精品亚洲精品2020| 婷婷六月久久综合丁香中文| b精品调教b欧美| 国产精品porn| 日韩在线观看视频一区二区三区| 四虎在线免费播放| 日韩欧美亚洲一级| 国产亚洲精品拍拍拍拍拍| 亚洲视频在线观看免费网站| 91原创精品视频在线观看| 三级午夜理伦三级在线观看国产| 亚洲大片在线免费看| 欧美亚洲精品国产1区2区| 亚洲国产精品特色大片观看完整版| av黄色在线免费观看不卡| 久久综合精品91| 美女很黄的网站免费看| 精品国内自产拍在线观看| 亚洲av网站在线播放| 国产精品久久久内射| 日产中文字幕一码| 黄网站大全免费国产| 国产白丝一区二区三区| 最新日韩精品久久久| 永久免费av永久在线观看| 午夜久久久久久久| 一区二区三区新视频| 视频在线观看一区二区| 在线播放免费观看不卡91| 亚洲国产天堂影院精品网| 欧美一区二区伦理在线| 中文字幕精品人妻丝袜| 鲁啊鲁啊鲁在线视频播放| 中文字幕亚洲人妻色偷偷久久| 天堂精品视频一区二区在线观看 | 成人av在线播放免费| 樱桃视频一区二区三区| 欧美国产成人精品| 欧美激情一区自拍| 久久999国产高清精品| 中文字幕日韩观看| 最新国产精品视频导航| 美女黄网站久久久久| 日韩中文乱码字幕| 国产成人精品在线一二三区| 亚洲精品尤物av在线观看不卡| 午夜桃色国产精品| 国产精品综合色区av| 日韩在线观看视频一区二区三区 | 国产欧美日韩视频| 日本高清卡一卡二xxxx| 亚洲av激情五月性综合| 久久久久黄色精品免费看| 日韩一区二区亚洲| 国产中文字幕乱码在线| 精品国产呻吟久久av| 国产亚洲一二三区精品| 中文字幕在线观看视频久| 成人免费高清福利视频| 欧美日韩黄色一区| 久久久久久人妻精品一区按摩| 精品一区二区三区四区视频观看| 日韩精品成人中文字幕| 99久久无色码中文字幕婷婷| 嗨久久网一区二区| 日韩精品数一数二在线观看| 在线 91 大神精品| 日韩精品女优一区二区三区| 岛国一区二区三区免费看| 一个人看的亚洲国产av| 美女免费观看一区二区三区| 日韩av电影中文字幕不卡| 国产精品24时在线播放| 日韩影院一区二区三区在线观看| 一区二区三区国产视频| 九九免费视频中文字幕在线观看| 久久精品99久久久久久久久久| 国产你懂的网址中文字幕| 蜜臀久久久亚洲一级av| 在线你懂的精品日韩在线| 久久综合精品91| 国产高清黄色视频网站| 亚洲国产精品久久久久秋霞不卡| 日韩一区国产一级| 欧美国产日韩日本在线| 亚洲精品视频大全在线观看| 久久久精品美女mm久久久| 亚洲中文字幕视频电影播放| 亚洲区日韩区国产区在线| 肉色丝袜足j视频国产| 国产一区二区不卡在线 性色| 日本电影一区二区在线观看| 亚洲国产成人女人| hs视频在线观看| 乱码电影在线观看欧美变态| 中文字幕免费观看有码| 中文字幕免费三级| 免费观看污视频网站| 国产一区欧美亚洲第一页| 午夜福利av免费播放| 中文字幕在线精品乱码麻豆| 99在线热这里只精品视频| 91人妻人人爽人人狠| 一个人免费午夜福利| 国产 欧美 日本 中文字幕| 视频一区视频二区同事| 日韩二区中文字幕在线| 91精品在线亚洲综合| 亚洲最大午夜福利网站| 国产成人精品一区二三区2022| 中文字幕国产视频一区| 日韩在线二区三区免费| 亚洲国产午夜高清毛片| 国产理论一区二区电影| 亚洲国产麻豆人人爽人人澡| 乌克兰女人大白屁股ass| 国产高清免费在线| 日本人妻少妇视频专区| 久久综合国产精品| 国产精品视频三级| 亚洲 欧美 精品| 蜜臀av一区二区精品字幕| 亚洲欧美国产中文日韩| 手机看片1024一区二区三区| 在线精品免费观看视频| 亚洲 欧洲视频免费| 国产91对白在线播放边| 亚洲 综合 欧美在线| 国产麻豆精品在线观看免费| 一区中文字幕久久| 国产理论一区二区电影| 欧美自拍另类亚洲| 在线免费看片中文字幕| 婷婷久久久亚洲中文字幕| 一区二区三区av在线网| 国产精品私拍在线| 欧美激情一区日韩| 日韩福利国产精品| 成人一区二区网站| 99国产成人免费视频| 免费乱理伦片奇优影院| 国产理伦天狼影院| 久久麻豆亚洲av 久久久久亚洲av大片 | 精品国产一区二区三区四区四| 精品无人妻一区二区三区9| 黄色激情网站中文字幕| 亚洲av中文有码在线| 在线观看亚洲成人| 免费人成黄页在线观看国产| 国产人妖ts一区二区| 欧美另类图片视频无弹跳第一页| 日韩二区三区少妇| 日韩国产激情一区| 蜜桃在线精品一区| 在线你懂的精品日韩在线| 片多多在线观看影视资源| 国内揄拍高清国内精品对白| 成人深夜福利在线视频| 在线观看亚洲国产一区二区三区| 国产精品久久久久综合| 国产午夜亚洲精品| 午夜福利少妇亚洲| 国产XXX69麻豆国语对白 亚洲国产福利| 精品少妇人妻嫩草av无| 激情亚洲熟女视频狠狠操| 日韩精品一区二区中| 福利视频一二三区| 亚洲成av片中文字幕在线观看| 在线观看啪视频中文字幕| 国产前精品乱码久久久久| 亚洲成a人一区二区三区| 波多野结衣精品无人区| 清纯唯美激情另类亚洲| 在线天堂中文www官网| 粉嫩av夜夜澡人人爽人人| 亚洲国产精品特色大片观看完整版| 成人资源网在线91青青| 日本精品福利在线视频| 青青久久久成年综合视频| 亚洲韩国日本欧美综合| 欧美精品不卡在线| 啊啊啊啊色国产又黄又爽| 中文字幕视频大全网站| av网站大全在线观看| 字幕中文日韩欧美| 最好看的中文字幕一区| 国产小视频在线观看二区三区| 无码专区男人本色| 国产成人av片在线| 久久久久综合精品福利| 中文字幕日韩观看| 亚洲熟妇中文字幕日产乱码| 精品国产乱码久久久久久妇女| 国产av一区二区6| 亚洲一区在线视频在线播放| 665566综合中文字幕在线| 美女张开腿国产91| 久久久区一区二区三区| 亚洲另类图片区小说区| 黄色永久网站在线免费观看| 亚洲精品国产自在在线观看l| 手机看久久精品片| 中文字幕不卡在线日韩| 午夜激情男女日本| 欧美va亚洲va在线观看| 久久精品熟女少妇亚洲av| 黄片一级欧美日韩一区二区| 亚洲最大中文字幕永久网址| 久久caoporn国产免费| 国产无套露脸大学生视频| 操你啦天天免费视频| 日韩欧美网站在线观看视频| 久久亚洲国产中文| 午夜av一区二区在线| 在线观看人成国产| 午夜一级二级三级| 日韩在线免费观看电影一区| 丝袜亚洲色图中文字幕| 波多野结衣aⅴ一区| 国产aⅴ爽av久久久久久| 成人一区二区毛片| 小明永久中文字幕| 国产免费午夜精品理| 日本视频一区二区在线免费| 日韩中文字幕无马| 黄瓜视频在线免费观看| 精品久久成人性生活视频| 日本免费啪视频在线观看| 亚洲夜夜草精品一区二区| 午夜福利在线播放免费| 欧美午夜理伦三级在线观看| 成人深夜福利在线视频| 午夜视频在线观看黄片| 国产激情av在线播放| 在线观看免费亚洲黄色片| www.久久久久久久久| 国内老熟妇对白xxxxhd| 国产精品高清不卡在线电影院 | 韩日一级人添人人澡人人妻精品| 日韩中文 人妻少妇| 在线观看亚洲专区一二区| 国产+成+人+亚洲欧洲在线| 欧美中文字幕6666| 欧美人妻日韩一区二区三区| 18国产精品久久久| 日韩精品 久久久久| 欧美精品1区2区| 在线观看亚洲国产一区二区三区| 高清在线午夜一区二区亚洲| 精品人妻少妇久久久久综合| 99re免费热精品视频在线| 91精品制服丝袜在线影院| 免费日韩中文字幕av| 美女视频国产精品| 丰满人妻日韩一二三区不卡| 免费不卡视频在线播放| 2018在线观看欧美中文字幕| 日韩欧美素人制服中文| 日韩一区二区三区成人在线| 日本一区二区三区日本视频| 国产激情美女视频| 黄片视频在线观看亚洲人| 久久久999国产精品视频| 国产成人女人在线观看| 国产日韩欧美久久| 日本黄视频一区二区三区| 日韩av免费在线高清观看| 亚洲黄色大片免费的观看| 最近免费欧美日韩在线视频| 秋霞av鲁丝一区二区三区 | 久久久久久一草婷婷视频网| 色 综合 一区二区| 九九99九九99在线精品| 日韩国产在线观看不卡| 欧美喷潮极限另类视频| 日韩在线一区视频| 人妻激情偷乱一区二区三| 欧美日韩免费一区| 无码人妻丰满熟妇区bbbbxxxx| 99re免费热精品视频在线| 欧洲二区在线观看| 手机av免费在线观看| 97精品国产高清一区二区三区| 国产精品国产精品一区精品国产| 精品国产18禁久久久久久| 国产三级黄在线视频| 91久久久色在线观看| 少妇特黄一区二区三区| 成人av天堂中文在线| 亚洲熟妇精品久久久久| 国产一区亚洲欧美在线| 亚洲欧美综合在线不卡| www.久久久久久久久| 亚洲中文字幕av免费在线观看| 动漫精品专区一区二区三区 | 日韩精品高清在线一区| 久久人妻久久久人妻| 亚洲 综合 欧美在线| 亚洲天堂av另类在线播放| 99r视频这里只有精品| 色嫒精品一区二区三区| 国产精品视频网站二区| 中文字幕不卡在线日韩| 热久久免费频精品手机在线观看| 色综合色综合狠狠天天| 日韩欧美中文字幕一区二区三区 | 猫咪在线观看视频最新地址| 午夜免费啪视频在线观看| 日韩精品 久久久久| 999久久精品人妻| 亚洲综合视频一二三区| 日韩av中文字幕第一| www.成人a视频在线观看| 日韩欧美视频在线观看网站| 手机在线免费看黄色av| 欧美日韩91九色| 欧美成精品第一区二区三区欧美| 乱码日韩中文字幕| 欧美精品不卡在线| 欧美在线不卡高清视频| 国产精品日本一区二区视频| 女同一区二区九九| 综合久久五十路熟女| 国产精品第72页| 欧美一区二区三区视频区| 欧美激情精品久久久久久不卡| 成人午夜爽爽爽免费视频| 日韩欧美精品中文字幕| 中文字幕无线码一区二区三区| 91麻豆产精品久久久久久| 日本欧美一区二区三区337p| 欧美亚洲日本视频| 国产精品三级三级三级| 久久精品一区二区三区按摩| 青青一区二区三区91| 国产一区二区不卡在线 性色| 久久成人大片网站| 国产精品久久2区| 精品日韩国产欧美在线| 久久人妻中文av 久久中文人妻av| 欧美国产日本在线不卡| 中文字幕在线精品乱码麻豆| 欧美成年一区二区| 久久久亚洲一区二区影视| 在线观看免费不卡顿av| 精品国产福利视频| 久久久999国产精品视频| 亚洲欧美一区二三区| 国产精品一级片在线观看| 亚洲欧洲中文日韩a乱码| 宅福利国产欧美亚洲| 亚洲高清一二三区在线播放视频| 国产精品又爽又黄一区二区三| 日本久久一区二区三区精品 | 日韩不卡中文在线视频网站 | 日本精品福利在线视频| 精品久久久中文字幕二区| 午夜av在线影院 国产精品免费看av| 国产亚洲中文字幕成人| 成人免费黄色免费| 免费一级做a爰片久久毛片潮喷 | 永久黄网站色视频免费网站| 一区二区免费av| 久久东京热日韩精品一区| 国产午夜精品乱码人妻老太太| 亚洲精品尤物av在线观看不卡| 欧美啪啪婷婷一区| 久久偷看各类wc女厕嘘嘘| 中文字幕第3页一区二区| 中文字幕超清在线免费观看| 免费一级做a爰片久久毛片潮喷| 婷婷六月久久综合丁香中文| 欧美国产日本在线不卡| 日韩人妻中文字幕日日骚| 精品欧美国产免费中文| av免费网站一区二区| 一个人看的亚洲国产av| 韩国一区二区三区黄色录像| 伊人色在线综合网| 中文字幕亚洲综合久久2020| 久久久精品妇女99| 国产av久久久久精东av| 国产成人精品免高潮费视频| 中文一区二区三区人妻| 国产传媒av网站在线观看| 亚洲精品aⅴ中文字幕| 日韩精品美女福利视频| 精品中文字幕不卡在线观看| 日韩中文字幕在线三区| 国产精品,视频一区,久久久| 最近中文免费一区二区三| 日韩av在线高清观看| 国产成人精品一区二三区2022 | 国产精品美女禄体视频网站| 精品久久久中文字幕二区| 蜜臀久久久亚洲一级av| 在线免费日韩av| 国内精品伊人久久久7777| 日本午夜福利电影在线看| 在线免费观看av不卡| 成人粉嫩av一区二区| 亚洲欧美国产67194| 日韩一区二区黄不卡电影| 欧美国产成人精品| 国产午夜美女免费视频| 国产一级色片中文字幕| 国产网红主播av国内精品| 亚洲天堂av另类在线播放| 亚洲精品a在线观看视频| 综合久久给合久久狠狠狠97色| 亚洲一区久久精品| 亚洲精品福利三区| 久久精品在线视频| 中文字幕国产日韩在线观看| 精品人妻乱码久久| 欧美一区二区三区放荡老妇| 91p1精品在线观看| 2020国产在线| 91青青草原在人线免费| 日韩av电影中文字幕不卡| 国产成人啪免费视频| 中文字幕在线观看视频欧美精品 | 国产激情美女视频| 亚洲天堂日韩国产av| 人人澡人人人人澡人人超碰新 | 麻豆一区二区91久久久| 国产成人精品一区二三区2022| 日本人成精品视频在线免费观看 | 波多野结衣aⅴ一区| 亚洲欧洲在线精品| 一夜七次郎国产精品亚洲| 给我免费播放毛片| 午夜免费高清网站| 欧美日韩国产在线无吗| 美女成人免费视频观看| 中文字幕成人精品久久不卡| 嗨久久网一区二区| 在线观看免费亚洲黄色片| 久久久女人妻96一区精品香蕉| 精新精新国产自在现拍| 日本女妇一区二区三区| 精品国产福利视频| 97超级碰碰久久久| 国产成人小视频在线观看| 精品国产乱码久久久久夜夜嗨| 国产又色又爽视频在线观看| 日韩人妻大片观看网址| 国产成人av大片大片在线播放| 中文字幕亚欧美在线视频| 精品蜜桃久久久久| 亚洲av综合不卡一区| 国产高清乱码精品一区二区三区| 在线你懂的精品日韩在线| 精品美女久久久av免费观看| 青青在线观看精品| 日本视频在线视频一区二区| 国产精品一国产av涩爱| 亚洲韩国日本欧美综合| 亚洲最大黄色三级网站| 亚洲最大一级黄色片网站| 精品久久久久久久中文字幕| 久久精品国产亚洲v神秘四虎 | 欧美人妻少妇精品久久久| 久久激情综合六月天| 日本亚洲中文字幕在线| 久久久久综合精品福利| 激情自拍亚洲欧美日韩| 伊人激情精品电影第一页| 久久五月精品综网中文字幕 | 黄网站色视频在线观看| 久久超级碰碰碰一区二区三区| 日韩欧美一区二区年费| www色播com| 久久99热精品免费观看| 国产精品偷乱视频免费看| 丁香婷婷激情综合五月天| 国产精品蜜臀久久久| 国内老熟妇对白xxxxhd| 国产三级精品三级男人的天堂, | 国产高潮又爽又无遮挡又免费| 综合亚洲综合图区网友自拍| av在线一区二区免费播放| 人人妻人人澡人人爽欧美视频| 国产精品国产三级国快看| 免费高清在线毛片| 日本高清视频www在线观看| 久久久五月综合狠狠| 亚洲视频欧洲视频在线观看| 精新精新国产自在现拍| 久久婷婷久久一区二区三区 | 亚洲国产精品日韩在线观看| 免费人成视频在线观看网站| 日韩av人人夜夜澡人人爽| 色偷偷人人澡久久超| 91人妻国产精品麻豆| 国产人妖ts一区二区| 亚洲一卡二卡三卡在看| 日本在线视频播放7区| 岛国一区二区三区免费看| 国产欧美手机在线观看| 免费的欧美一区二区| 50老熟妇女一区二区三区| 欧美在线中文字幕不卡| 中文字幕一区不卡在线观看的| 亚洲国产精品卡一卡二| 观看中文字幕日韩三级av| 国产精品人久久久久久| 亚洲电影在线免费观看网站| 2023小小精品女教师日韩精品亚洲人成在线播放| 97精品国产91久久久久久| 激情欧美日韩亚洲| 丁香五六婷婷久久| 精品视频一区少妇| 精品久久久久字幕一区| 亚洲av手机版久久精品 | 久久精品手机免费看片| 99精品视频免费在线观看| 高颜值露脸极品在线播放| 午夜xx免费视频| 亚洲日本va午夜中文字幕一区| 精品视频精品91美女视频| 精品人妻av区乱码久久蜜臂| 欧美精品在线免费| 欧美精品一区二区自拍中文主播| 国产高清一区国产高清二区| 国产美女视频免费久久不卡| 蜜臀av国产精品一区二区| 亚洲日韩精品无码av海量| 国产无遮无挡120秒| 野花高清在线观看免费官网中文版| 欧美内射精品在线观看| 欧美日韩国产精品美女服务网站| 日本一区二区三区日本视频| 日韩av中文在线字幕| 国产va精品免费观看| 性日韩xx一区二区在线| 精品夜夜嗨av一区二区 | 国产资源一区二区在线播放| 视频一区视频二区同事| segou视频在线观看| 深夜成人福利久久| 久久国内一区二区| 欧美日韩tv免费观看| 福利一区二区国产| 欧美精品一区二区三区的| 日本免费在线观看视频大全| 国产午夜福利免费在线观看| 国产伦精品二区三区视频| 日本国产成人黄网站| 久久久久久久亚洲精品影视| 亚洲欧洲免费视频观看激情片| 亚洲欧美日韩一区天堂| 人人妻免费在线视频| 中文字幕亚洲免费在线观看| 国产精品久久毛片影院| www.一区二区少妇| 亚洲天堂三级视频| 夜鲁鲁鲁夜夜综合交换视频| 亚洲欧美日韩久久一区| 欧美性受黑人性爽| 亚洲区另类春色综合小说| 精品99久久精品| 久久嫩草精品久久久精品才艺表演 | 最新午夜毛片视频| 日韩精品中文字幕一区二区三区| 欧美亚洲激情午夜网| 国产一区二区一一区在线观看| 亚洲天堂无码高潮激情视频| 国产日本亚洲福利18在线看| 东方av免费观看久久av| 国产精品久久久久久久模特人妻| 免费观看的黄色av| 久久精品亚洲国产天堂| 制服 丝袜 日韩 中文| 中文字幕免费三级| 欧美无乱码久久久免费午夜一区 | 在线观看亚洲专区一二区| 伊人久久狠狠综合| 亚洲另类图片区小说区| 国产亚洲精品18禁91九色| 不卡免费观看av 免费av观看不卡| 亚洲色图精品一区二区三区| 国产视频一区二区三区亚洲| 日本午夜福利电影在线看| av在线一区二区免费播放| 日韩在线成人综合视频观看| 亚洲日本∨a中文字幕久久| 99精品久久久久中文字幕人妻| 亚洲精品日韩综合观看成人91 | 美女网站尤物在线观看| 黄片欧美日韩亚洲一区三区| 成人日韩视频网站在线观看| 外国一区2区黄色片| 91精品亚洲视频在线观看| 欧美日韩国产精品系列区| 黄色免费电影av 亚洲www啪成人一区二区麻豆 | 欧美一二三区视频不卡| 成人一级片免费观看| 欧美 日韩 人妻 高清 中文| 亚洲国产精品成人av| 欧美精品成在线观看| 国产揄拍高清国内精品对白| 97精品国产高清一区二区三区| 日韩欧美在线观看91| 欧美喷潮极限另类视频| 免费观看污视频网站| 91精品久久久久久久久久中文| 成人深夜福利在线视频| 亚洲高清视频在线观看一区二区| 性日韩xx一区二区在线| 久久天天躁日日躁狠狠躁| 日韩 高清 经典 中文| 在线观看免费亚洲黄色片| 日本二区三区视频网站| 3751影院色婷婷一区二区| 国内精品国产三级国产99| 亚洲伊人久久大香线蕉影院| 成人乱码一区二区三区av| 成人一区二区网站| 久久午夜精品免费看| 午夜片国内精彩视频一区二区| 亚洲一区二区三区片| 最新亚洲人妻系列| 久久国内一区二区| 视频一区二区三区中文| 亚洲精品一区二区视频网站| av天堂吧手机版在线观看| 日本欧美亚洲三级| 亚洲avav久久| 亚洲视频在线观看免费网站| 丰满人妻一区三区| 天天躁夜夜躁狠狠躁2021a2| 日韩成人av一区在线观看| 中文字幕综合在线观看~| 国产三级床上黄色视频| 免费一区二区三区高清| 国产精品一区尤物| 日本aⅴ一二区在线观看| 国产高潮又爽又无遮挡又免费| 欧美大片日韩特一级在线观看| 欧美激情一区日韩| 欧美日本一道免费一区三区| 91人妻人人爽人人澡精品| 日韩成人一区二区在线观看| 午夜免费在线高清观看av| 国产欧美在线视频二区三区| 欧美高清在线观看不卡| 91精品门事件在线观看| 国产精品又爽又黄一区二区三| 国产精品suv一区二区三区6| 色婷婷亚洲成人网| 久久一区二区欧美| 亚洲黄色大片免费的观看| 中文字幕在线精品乱码麻豆| 中文字幕一级特黄大片| 黄站午夜福利观看| 蜜臀av国产精品一区二区| 2023小小精品女教师日韩精品亚洲人成在线播放 | 91亚洲精品免费在线观看| 清纯唯美激情另类亚洲| 日本美女久久一区二区| 亚洲精品视频在线观看一卡| 国产av不卡久久久| 99人人爽人人妻人人澡| 欧美精品vieoex性欧美| 黄片视频在线观看亚洲人| 中文一区二区三区人妻| 国产av成人中文字幕| 亚洲人人夜夜澡人人爽| 影音先锋女人aa鲁色资源| 国产原创在线视频| 国产91av免费在线| 国产成人三级视频在线播放| 久久蜜臀亚洲一区二区| 亚洲国产精品999| 日韩综合av一区二区在线| 欧美少妇内射bb| 中文,欧美日韩在线| 国产 欧美精品 字幕| 日韩精品美女福利视频| 丰满人妻日韩一二三区不卡| 日韩人妻欧美人妻| 国产日韩欧美系列一区二区自拍| 人妻无码中文专区久久av| 欧美专区在线视频| 大香大焦伊人中文字幕五月天| 国产精品最新乱视频二区| 夜夜春国产精品不卡一区二区| 欧美黄色国产精品| 欧美一区精品中文字幕| 精品在线免费观看视频| 手机看片1024一区二区三区| 亚洲精品成人高清视频| 污亚洲一区网站在线观看| 2021最新精品国自产拍视频| 国产精品免费手机在线网站| 91久久久色在线观看| 在线视频欧美精品一区二区| 中文字幕av一区二区三区人妻少妇| 人妻美女中文字幕| 香蕉视频久久免费| 美女免费一二三区视频| 99久无码中文字幕一本久道| 国产日韩一区二区三区片| 国产亚洲中文字幕成人| 日韩精品欧美视频在线| 97在线观看视频| 99九九精品视频| 国产激情中文字幕av| a∨色狠狠一区二区三区| 国产精品自在线拍国产手机版| 美女张开腿国产91| 精品少妇123区| 人妻中文字幕不卡有码视频| 亚洲av日韩av天堂久久麻豆| 精品国产成人综合| 免费av 一区二区| 日韩欧美三级在线观看a| 中文字幕高清在线播放第一页| 日本美女黄p在线观看| 欧美日本电影在线观看视频| 国产日韩欧美系列一区二区自拍| 一区二区三区在线视频蜜臀| 在线观看国产精品三级| 精品国产99久久久久久| 色综合网欧美久久网| 免费一区二区三区久久| 少妇特黄一区二区三区| 2021国产精品一卡2卡三卡4卡| 欧美专区在线观看一区| av在线播放不卡一区| 亚洲国产精品视频一二三区| 日韩视频精品二区| 亚洲最大日韩免费观看视频| 亚洲最大中文字幕永久网址| 国产一区二区啊啊啊在线观看| 国产日本欧美在线看| 国产精品久久久精品免费| 国产亚洲av嫩草精品影院| 亚洲不卡大片在线观看视频| 东京热中文字幕视频| 日韩xxx一区二区三区| 国产三级精品三级观看| 国产一区二区三区香蕉| 亚洲伦理偷拍欧美,另类,色图| 92看看一区二区三区在线观看 | 麻豆一区二区91久久久| 久久免费一区二区| 国产高清色视频在线观看| www.成人a视频在线观看| 亚洲五月天精品久久| 日本黄色视频一区,二区| 国产丝袜美女一区二区三区| 黑人欧美一区二区三区4p| av男人天堂综合网| 日韩欧美精品中文字幕| 黄色中文字幕网站| 影音先锋女人aa鲁色资源| 中文高清在线不卡一区二区| 欧美激情精品久久久久久不卡 | 免费在线亚洲成人| 日韩欧美综合一区| 精品一区二区三区四区国产片| 亚洲精品天堂日韩| 丝袜美女在线观看一区二区三区| 日韩精品欧美高清人妻| 欧美性xxxx最大尺码| 亚洲码丝袜美女一区二区三区| 国产自免费在线观看| 国产探花在线精品一区二区 | 男人的天堂在线视频99999 | 成人综合网一区二区| 最新网址在线观看一区二区| 欧美日韩黄色一区| 亚洲乱码一区二区三区三州91| 精品人妻中文字幕色站| 亚洲国产精品日韩在线观看| 人妻 中文字幕 精品| 亚洲三级成人在线观看| 日韩成人精品免费av| 黄色中文字幕在线网站| 欧美成人精品一二三区| 亚洲精品自拍成人| 亚洲国产日韩欧美视频三区| 中文字幕欧美人妻视频| 国产 欧美精品 字幕| 成人网站色52色在线观看| av天堂一区二区三区精品| 中文字幕亚洲免费视频| 久久99久久精品| 日韩精品最新久久久| 欧美一级亚洲欧洲日本| 亚洲成人精品字幕| 美女免费观看一区二区三区| 国产亚洲中文字幕成人| 欧美成人精品一二三区| 亚洲天堂av另类在线播放| 免费成人av日韩 免费成人日韩av| 亚洲精品中文字幕999| 久久亚洲欧美精品| 最新国产精品视频导航| 国产va精品免费观看| 深夜福利影院在线观看免费| 欧美又黄又爽又色视频免费一区| 99免费观看视频三区| 日韩精品1区2区3区久久 | 99国产成人免费视频| 久久女人精品天堂av影院麻豆| 人人做天天爱夜夜| 国产精品久久久一区二区视频| 免费人成视频在线观看色网址 | 国产美女在线播放那么小| 国内网友自拍视频在线免费观看 | 一区二区三区拍拍午夜福利视频| 国产中文字幕亚洲国产| 精品乱码久久久久久蜜桃| 国产福利区一区二区| 国产精品黄色av电影网| 日本精品视频在线观看网站| 99精品久久久久中文字幕人妻| 国产成人精品视频一区| 国产高潮流白浆视频在线观看| 免费大片黄色国产在线观看| 精品视频一区少妇| 国产美女又黄又爽又色网站| 福利视频一区二区入口| 手机福利看片永久免费| 日韩专区免费网站| 肉色丝袜足j视频国产| 国产av中文字幕片| 麻豆精品国产一区二区| 不卡视频在线观看一二三区| 无码毛片一区二区三区本码视频| 欧美性淫爽ww久久久久无| 亚洲福利午夜视频| 亚洲精品成人网站在线观看| 精品乱码一区二区三区不卡视频| 亚洲淑女一区二区| 91麻豆产精品久久久久久| 国产在线精品观看一区二区| 少妇淫真视频一区二区| 精品国产乱码久久久久久妇女| 人妻精品视频在线| 影视一区二区三区| 一区二区三区av观看| 国产三区四区五区在线观看| 国产一区亚洲欧美在线| 国产真实一区二区三区| 亚洲av香蕉色一区二区三区 | 国产精品久久久久久久久久影院 | a v天堂中文字幕在线| av在线一区二区免费播放| 日韩亚洲国产av影片| 日韩精品免费视频看| 麻豆影视国产日韩欧美一区二区| 黑人欧美一区二区三区4p| 嫩国产精品嫩草影院久久久久| 亚洲最大在线观看视频网站| 久久久精品人妻一区二区三区| 亚洲视频播放在线| 中文字幕在线观看国产| 美女少妇喷水久久一区二区|